In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is t...In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is transformed to discrete system of equations, and then we obtain the solvable conditions and the explicit solutions in class L2[-π, π].展开更多
This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of ...This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.展开更多
Ti-6A1-4V has a wide range of applications, especially in the aerospace field;however, it is a difficultto- cut material. In order to achieve sustainable machining of Ti?6A1-4V, multiple objectives considering not onl...Ti-6A1-4V has a wide range of applications, especially in the aerospace field;however, it is a difficultto- cut material. In order to achieve sustainable machining of Ti?6A1-4V, multiple objectives considering not only economic and technical requirements but also the environmental requirement need to be optimized simultaneously. In this work, the optimization design of process parameters such as type of inserts, feed rate, and depth of cut for Ti-6A1-4V turning under dry condition was investigated experimentally. The major performance indexes chosen to evaluate this sustainable process were radial thrust, cutting power, and coefficient of friction at the toolchip interface. Considering the nonlinearity between the various objectives, grey relational analysis (GRA) was first performed to transform these indexes into the corresponding grey relational coefficients, and then kernel principal component analysis (KPCA) was applied to extract the kernel principal components and determine the corresponding weights which showed their relative importance. Eventually, kernel grey relational grade (KGRG) was proposed as the optimization criterion to identify the optimal combination of process parameters. The results of the range analysis show that the depth of cut has the most significant effect, followed by the feed rate and type of inserts. Confirmation tests clearly show that the modified method combining GRA with KPCA outperforms the traditional GRA method with equal weights and the hybrid method based on GRA and PCA.展开更多
Genome information from model species such as rice can assist in the cloning of genes in a complex genome, such as maize. Here, we identified a maize ortholog of rice GS5 that contributes to kernel development in maiz...Genome information from model species such as rice can assist in the cloning of genes in a complex genome, such as maize. Here, we identified a maize ortholog of rice GS5 that contributes to kernel development in maize. The genome- wide association analysis of the expression levels of ZmGSs, and 15 of its 26 paralogs, identified a trans-regulator on chromosome 7, which was a BAK1-1ike gene. This gene that we named as ZmBAK1-7 could regulate the expression of ZmGS5 and three of the paralogs. Candidate-gene association analyses revealed that these five genes were associated with maize kernel development-related traits. Linkage analyses also detected that ZINGS5 and ZmI3AK1-7 co-localized with mapped QTLs. A transgenic analysis of ZINGS5 in Arabidopsis thaliana L. showed a significant increase in seed weight and cell number, suggesting that 2mG55 may have a conserved function among different plant species that affects seed development.展开更多
By means of the invariant integral kernel (the Berndtsson kernel), the complex Finsler metric and the non-linear connection associated with the Chern-Finsler connection to research into the integral representation the...By means of the invariant integral kernel (the Berndtsson kernel), the complex Finsler metric and the non-linear connection associated with the Chern-Finsler connection to research into the integral representation theory on complex Finsler manifolds, theKoppelman and Koppelman-Leray formulas are obtained, and the - -equations are solved.展开更多
基金Supported by the Qufu Normal University Youth Fund(XJ201218)
文摘In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is transformed to discrete system of equations, and then we obtain the solvable conditions and the explicit solutions in class L2[-π, π].
文摘This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.
文摘Ti-6A1-4V has a wide range of applications, especially in the aerospace field;however, it is a difficultto- cut material. In order to achieve sustainable machining of Ti?6A1-4V, multiple objectives considering not only economic and technical requirements but also the environmental requirement need to be optimized simultaneously. In this work, the optimization design of process parameters such as type of inserts, feed rate, and depth of cut for Ti-6A1-4V turning under dry condition was investigated experimentally. The major performance indexes chosen to evaluate this sustainable process were radial thrust, cutting power, and coefficient of friction at the toolchip interface. Considering the nonlinearity between the various objectives, grey relational analysis (GRA) was first performed to transform these indexes into the corresponding grey relational coefficients, and then kernel principal component analysis (KPCA) was applied to extract the kernel principal components and determine the corresponding weights which showed their relative importance. Eventually, kernel grey relational grade (KGRG) was proposed as the optimization criterion to identify the optimal combination of process parameters. The results of the range analysis show that the depth of cut has the most significant effect, followed by the feed rate and type of inserts. Confirmation tests clearly show that the modified method combining GRA with KPCA outperforms the traditional GRA method with equal weights and the hybrid method based on GRA and PCA.
基金supported by the National Natural Science Foundation of China(31222041)the National Hi-Tech Research and Development Program of China (2012AA10A307)
文摘Genome information from model species such as rice can assist in the cloning of genes in a complex genome, such as maize. Here, we identified a maize ortholog of rice GS5 that contributes to kernel development in maize. The genome- wide association analysis of the expression levels of ZmGSs, and 15 of its 26 paralogs, identified a trans-regulator on chromosome 7, which was a BAK1-1ike gene. This gene that we named as ZmBAK1-7 could regulate the expression of ZmGS5 and three of the paralogs. Candidate-gene association analyses revealed that these five genes were associated with maize kernel development-related traits. Linkage analyses also detected that ZINGS5 and ZmI3AK1-7 co-localized with mapped QTLs. A transgenic analysis of ZINGS5 in Arabidopsis thaliana L. showed a significant increase in seed weight and cell number, suggesting that 2mG55 may have a conserved function among different plant species that affects seed development.
基金This work was supported by the National Natural Science Foundation of China and China Postdoctoral Science Foundation(Grant No.10271097,20040350105)Program for New Century Excellent Talents in Xiamen University.
文摘By means of the invariant integral kernel (the Berndtsson kernel), the complex Finsler metric and the non-linear connection associated with the Chern-Finsler connection to research into the integral representation theory on complex Finsler manifolds, theKoppelman and Koppelman-Leray formulas are obtained, and the - -equations are solved.