With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machine...With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machinery is expanding.The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform(M3P),which offers high speed,precision,and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components.Therefore,the design of the control system is crucial for the overall precision of the platform;conventional proportional–integral–derivative control cannot meet the system requirements,and so M3Ps are the subject of a growing range of modern control strategies.This paper begins by describing the development history of M3Ps,followed by their platform structure and motion control system components,and then in-depth assessments of the macro,micro,and macro-micro control systems.In addition to examining the advantages and disadvantages of current macro-micro motion control,recent technological breakthroughs are noted.Finally,based on existing problems,future directions for M3P control systems are given,and the present conclusions offer guidelines for future work on M3Ps.展开更多
To investigate a novel macro and micro driven linear piezoelectric motor composed of an ultrasonic motor with macro movement and a piezoelectric actuator with micro movement,a digital signal processing(DSP)based macro...To investigate a novel macro and micro driven linear piezoelectric motor composed of an ultrasonic motor with macro movement and a piezoelectric actuator with micro movement,a digital signal processing(DSP)based macro and micro power supply is designed,which fits the new linear piezoelectric motor.The power supply comprises a control circuit,a voltage conversion circuit,an amplifier circuit,a half-bridge module,an optical isolatorsdrive circuit,etc,where the DSP of TMS320F28335 is used as the controller.When the linear piezoelectric motor working in a macro driven state,the power supply outputs alternating currents with high frequency and high voltage,which drives the linear piezoelectric motor dynamically at an ultrasonic frequency;while working in the micro driven state,the power supply outputs direct currents with high voltage,which drives the linear piezoelectric motor in micro driven statically.Here a prototype of the macro-micro power supply is designed.After a series of experiments on the power supply with and without loads,the results show that the power supply can drive and control the macro micro driven linear piezoelectric motor,and realizes quick and seamless switch between macro and micro drive.In addition,the power supply can drive and control the ultrasonic motor or piezoelectric ceramic micro actuator individually.The power supply achieves the multiple parameters of output signals adjustable simultaneously and exhibits good control characteristics.展开更多
In order to further study the reliability of macro evaluation indexes,molecular dynamics (MD) was applied to the evaluation of asphalt binder.Micro evaluation indexes (potential energy,surface free energy,solubility p...In order to further study the reliability of macro evaluation indexes,molecular dynamics (MD) was applied to the evaluation of asphalt binder.Micro evaluation indexes (potential energy,surface free energy,solubility parameter and diffusion coefficient) of asphalt binder in different service phases (virgin,modified,aged and rejuvenated) were simulated.Combined with the variation characteristics of asphalt binder macro evaluation indexes (permeability,ductility,viscosity and softening point) in different service phases,the cross-scale correlation of macro-micro evaluation indexes was explored.The results show that the macro and micro evaluation indexes of asphalt binder have different characteristics in different service phases.The essence of the variation in the properties of asphalt binders is the difference in micro composition.In addition,there is a certain correlation between macro and micro evaluation indexes,which can be described by the gray relation theory.The cross-scale correlation of macro-micro evaluation indexes can provide a certain theoretical basis for the development of asphalt binder.展开更多
By use of a three-dimensional compressible non-hydrostatic convective cloud model with detailed microphysics featuring spectral bins of cloud condensation nuclei (CCN), liquid droplets, ice crystals, snow and graupe...By use of a three-dimensional compressible non-hydrostatic convective cloud model with detailed microphysics featuring spectral bins of cloud condensation nuclei (CCN), liquid droplets, ice crystals, snow and graupel particles, the spatial and temporal distributions of hydrometeors in a supercell observed by the (Severe Thunderstorm Electrification and Precipitation Study) STEPS triple-radar network are simulated and analyzed. The bin model is also employed to study the effect of CCN concentration on the evolution characteristics of the supercell. It is found that the CCN concentration not only affects the concentration and spectral distribution of water droplets, but also influences the characteristics of ice crystals and graupel particles. With a larger number of CCN, more water droplets and ice crystals are produced and the growth of graupel is restrained. With a small quantity of CCN the production of large size water droplets are promoted by initially small concentrations of water droplets and ice crystals, leading to earlier formation of small size graupel and restraining the recycling growth of graupel, and thus inhibiting the formation of large size graupel (or small size hail). It can be concluded that both the macroscopic airflow and microphysical processes influence the formation and growth of large size graupel (or small size hail). In regions with heavy pollution, a high concentration of CCN may restrain the formation of graupel and hail, and in extremely clean regions, excessively low concentrations of CCN may also limit the formation of large size graupel (hail).展开更多
Dispersion and nonlinear distortion have an effect on transmission performanc es of optic al fiber transimission systems. The schemes of dispersion compensation and nonli near distortion self-compens ation in telecom-...Dispersion and nonlinear distortion have an effect on transmission performanc es of optic al fiber transimission systems. The schemes of dispersion compensation and nonli near distortion self-compens ation in telecom-CATV co-network transmission systems are reported, followed by investigation on (1) the impact of dispersion compensation fiber (DCF) on fi ber nonlinear effects with a cascade of erbium-doped fiber amplifiers (EDFAs) an d different dispersion compensation schemes, (2) the impact of the complex on th e total nonlinear distortion induced by EDFA gain tilt and the light source. As a result , dispersion compensation optimal scheme and EDFA negative gain tilt are suggest ed as a solution to dispersion compensation and the nonlinear distortion self-c ompensation.展开更多
The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model ...The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model combined with the improved"Generalized Method of Cells( GMC) "is developed,which is used to predict the macro bearing strength and to characterize the micro constitute material failure of the bolt jointed composite laminates structure. Both the contact conditions at the bolt/hole boundary and the contact conditions at the specimen/fixture boundary,progressive damage,and the material properties degradation are all taken account into the analytical model. Thus,the numerical simulation results agree well with the experimental results.Finally,the effect of the fixture on the testing results is characterized. The results show that the incomplete contaction between the fixture and the specimen or the lack of the lateral constraint on the specimen will affect the limited bearing strength and the offset bearing strength of the bolt jointed composite laminates structure. In addition,the lower support rigid of the fixture will affect the rigid of the bolt jointed composite laminates structure.展开更多
The non-linear Fokker-Planck equation arises in describing the evolution of stochastic system, which is a variant of the Boltzmann equation modeling the evolution of the random system with Brownian motion, where the c...The non-linear Fokker-Planck equation arises in describing the evolution of stochastic system, which is a variant of the Boltzmann equation modeling the evolution of the random system with Brownian motion, where the collision term is replaced by a drift-diffusion operator. This model conserves mass, momentum and energy;the dissipation is much weaker than that in a simplified model we considered before which conserved only mass, thus more difficult to analyze. The macro-micro decomposition of the solution around the local Maxwellian introduced by T.-P. Liu, T. Yang and S.-H. Yu for Boltzmann equation is used, to reformulate the model into a fluid-type system incorporate viscosity and heat diffusion terms, coupled with an equation of the microscopic part. The viscosity and heat diffusion terms can give dissipative mechanism for the analysis of the model.展开更多
It’s the basic premise of promoting the healthy development of rural finance and strengthen-ing macro-prudential supervision to measure the systemic risk of rural finance accurately.We establish the dynamic factor CA...It’s the basic premise of promoting the healthy development of rural finance and strengthen-ing macro-prudential supervision to measure the systemic risk of rural finance accurately.We establish the dynamic factor CAPM and make an all-round and multi-angle quantitative study on the systemic risk of rural finance in China by constructing macro-micro index system and using machine learning to reduce the dimension of high-dimensional data.Our results show that the dynamic factor CAPM of using macro-micro big data can evaluate systemic risk of rural finance more comprehensively and systematically,and machine learning performs well in processing high-dimensional data.In addition,China’s rural financial systemic risk is stable compared with the Shanghai and Shenzhen main markets,but it is also susceptible to macro and micro influ-enced factors.Finally,it is pointed out that the early warning system of rural financial systemic risk could be constructed at macro and micro level,respectively.展开更多
A macro-micro dual-drive positioning system showing good potential for high acceleration and high precision positioning required in IC packaging applications is devised in this paper. The dual-drive positioning stage ...A macro-micro dual-drive positioning system showing good potential for high acceleration and high precision positioning required in IC packaging applications is devised in this paper. The dual-drive positioning stage uses a VCM (voice coil motor) driven macro positioning stage and a PZT piezo-electric driven micro positioning stage. The coupling characteristics of the system are analyzed to produce a control structure with a micro positioning stage that can dynamically compensate for the positioning error produced by the macro positioning stage. Models of the two positioning stages are described. The models cover both the mechanism and the actuator. For the macro positioning stage, friction characteristics are taken into account, and a controller with an LQG (linear-quadratic-Gaussian) control algorithm combining a feed-forward compensation algorithm is derived. A PID controller is used to control the micro positioning stage. Detailed designs are derived for the proposed approach, and the performance is validated by simulation.展开更多
This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manip...This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manipulator possesses the advantages of wide operating range, high speed, and low energy consumption, but the disadvantage of a low tracking precision. The macro-micro manipulator system improves tracking performance by compensating for the endpoint tracking error while maintaining the advantages of the flexible macro manipulator. A trajectory planning scheme was built utilizing the task space division method. The division point is chosen to optimize the error compensation and energy consumption for the whole system. Then movements of the macro-micro manipulator can be determined using separate inverse kinematic models. Simulation results for a planar 4-DOF macro-micro manipulator system are presented to show the effectiveness of the control system.展开更多
In this paper, a composite control scheme for macro-micro dual-drive positioning stage with high accel- eration and high precision is proposed. The objective of control is to improve the precision by reducing the infl...In this paper, a composite control scheme for macro-micro dual-drive positioning stage with high accel- eration and high precision is proposed. The objective of control is to improve the precision by reducing the influence of system vibration and external noise. The positioning stage is composed of voice coil motor (VCM) as macro driver and piezoelectric actuator (PEA) as micro driver. The precision of the macro drive positioning stage is improved by the com- bined PID control with adaptive Kalman filter (AKF). AKF is used to compensate VCM vibration (as the virtual noise) and the external noise. The control scheme of the micro drive positioning stage is presented as the integrated one with PID and intelligent adaptive inverse control approach to compensate the positioning error caused by macro drive positioning stage. A dynamic recurrent neural networks (DRNN) based inverse control approach is proposed to offset the hysteresis nonlinearity of PEA. Simulations show the positioning precision of macro-micro dual-drive stage is clearly improved via the proposed control scheme.展开更多
Here, we present a numerical investigation of the mechanical behavior of ellipsoids under triaxial com- pression for a range of aspect ratios. Our simulations use a multi-sphere approach in a three-dimensional discret...Here, we present a numerical investigation of the mechanical behavior of ellipsoids under triaxial com- pression for a range of aspect ratios. Our simulations use a multi-sphere approach in a three-dimensional discrete element method. All assemblies were prepared at their densest condition, and triaxial compres- sion tests were performed up to extremely large strains, until a critical state was reached. The stress-strain relationship and the void ratio-strain behavior were evaluated. We found that the stress-dilatancy rela- tionship of ellipsoids with different aspect ratios could be expressed as a linear equation. In particular, the aspect ratio influenced the position of the critical state lines for these assemblies. Particle-scale char- acteristics at the critical state indicate that particles tend to be flat lying, and the obstruction of particle rotation that occurs with longer particles affects their contact mechanics. Lastly, anisotropic coefficients related to aspect ratio were investigated to probe the microscopic origins of the macroscopic behavior. A detailed analysis of geometrical and mechanical anisotropies revealed the microscopic mechanisms underlying the dependency of peak and residual strengths on aspect ratio.展开更多
55NiCrMoV7 hot-work die steel is mainly used to manufacture heavy forgings in the fields of aerospace and automobile.This study aims to clarify the effects of heat treatment on the microstructural evolution and mechan...55NiCrMoV7 hot-work die steel is mainly used to manufacture heavy forgings in the fields of aerospace and automobile.This study aims to clarify the effects of heat treatment on the microstructural evolution and mechanical properties of the steel,in order to find out an optimal heat treatment scheme to obtain an excellent balance of strength,ductility and toughness.The steel was quenched at temperature from 790℃ to 910℃ followed by tempering treatments of 100–650℃ for 5 h.The mechanical property tests were carried out by tensile,impact toughness and hardness.Optical microscope(OM),scanning electron microscope(SEM)and transmission electron microscope(TEM)were used to observe the austenite grains,lath martensite,carbides and fracture morphology.The results show that the quenching temperature mainly influences the austenite grain size and the volume fraction of undissolved carbides(UCs),while the tempering temperature mainly influences the size and morphology of the martensite with a body centered cubic(BCC)and the carbides with a face centered cubic(FCC).The mechanical properties of the steel,including yield and tensile strength,ductility,impact toughness and hardness,get an excellent balance at a quenching range of 850–870C.As the tempering temperature increases,the yield and tensile strength and hardness decrease,while the ductility and impact toughness increase.These variation trends can be further verified by fracture SEM observation and analysis.Combined with a macro-micro coupled finite element(MMFE)modeling technique,the cooling rate,microstructural evolution and yield strength of the steel were predicted and compared with the tested data.展开更多
基金This research was supported financially by the China Postdoctoral Science Foundation,the National Natural Science Foundation of China(Grant No.51705132)the Young Backbone Teacher Training Program in Henan University of Technology,the Education Department of Henan Province Natural Science Project(Grant No.21A460006)the Natural Science Project of Henan Provincial Department of Science and Technology(Grant No.222102220088).
文摘With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machinery is expanding.The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform(M3P),which offers high speed,precision,and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components.Therefore,the design of the control system is crucial for the overall precision of the platform;conventional proportional–integral–derivative control cannot meet the system requirements,and so M3Ps are the subject of a growing range of modern control strategies.This paper begins by describing the development history of M3Ps,followed by their platform structure and motion control system components,and then in-depth assessments of the macro,micro,and macro-micro control systems.In addition to examining the advantages and disadvantages of current macro-micro motion control,recent technological breakthroughs are noted.Finally,based on existing problems,future directions for M3P control systems are given,and the present conclusions offer guidelines for future work on M3Ps.
基金supported by the National Natural Science Foundation of China(No.51177053)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.2012CXZD0016)+1 种基金the Key Project of Department of Education of Guangdong Province(No.20124404110003)Guangzhou Science and Technology Project(No.201510010227)
文摘To investigate a novel macro and micro driven linear piezoelectric motor composed of an ultrasonic motor with macro movement and a piezoelectric actuator with micro movement,a digital signal processing(DSP)based macro and micro power supply is designed,which fits the new linear piezoelectric motor.The power supply comprises a control circuit,a voltage conversion circuit,an amplifier circuit,a half-bridge module,an optical isolatorsdrive circuit,etc,where the DSP of TMS320F28335 is used as the controller.When the linear piezoelectric motor working in a macro driven state,the power supply outputs alternating currents with high frequency and high voltage,which drives the linear piezoelectric motor dynamically at an ultrasonic frequency;while working in the micro driven state,the power supply outputs direct currents with high voltage,which drives the linear piezoelectric motor in micro driven statically.Here a prototype of the macro-micro power supply is designed.After a series of experiments on the power supply with and without loads,the results show that the power supply can drive and control the macro micro driven linear piezoelectric motor,and realizes quick and seamless switch between macro and micro drive.In addition,the power supply can drive and control the ultrasonic motor or piezoelectric ceramic micro actuator individually.The power supply achieves the multiple parameters of output signals adjustable simultaneously and exhibits good control characteristics.
基金Funded by the Fundamental Research Funds for the Central Universities (No. 2572021AW10)。
文摘In order to further study the reliability of macro evaluation indexes,molecular dynamics (MD) was applied to the evaluation of asphalt binder.Micro evaluation indexes (potential energy,surface free energy,solubility parameter and diffusion coefficient) of asphalt binder in different service phases (virgin,modified,aged and rejuvenated) were simulated.Combined with the variation characteristics of asphalt binder macro evaluation indexes (permeability,ductility,viscosity and softening point) in different service phases,the cross-scale correlation of macro-micro evaluation indexes was explored.The results show that the macro and micro evaluation indexes of asphalt binder have different characteristics in different service phases.The essence of the variation in the properties of asphalt binders is the difference in micro composition.In addition,there is a certain correlation between macro and micro evaluation indexes,which can be described by the gray relation theory.The cross-scale correlation of macro-micro evaluation indexes can provide a certain theoretical basis for the development of asphalt binder.
基金supported by the National Natural Science Foundation of China (Grant Nos.40537034, 40805057)Jiangsu Province Qinglan Project"cloud fog precipitation and aerosol research group", Foun-dation of Key Laboratory for Cloud Physics and Weather Modification of CMA (Grant No. 2009Z0036)Foun-dation of Nanjing University of Information Science &Technology
文摘By use of a three-dimensional compressible non-hydrostatic convective cloud model with detailed microphysics featuring spectral bins of cloud condensation nuclei (CCN), liquid droplets, ice crystals, snow and graupel particles, the spatial and temporal distributions of hydrometeors in a supercell observed by the (Severe Thunderstorm Electrification and Precipitation Study) STEPS triple-radar network are simulated and analyzed. The bin model is also employed to study the effect of CCN concentration on the evolution characteristics of the supercell. It is found that the CCN concentration not only affects the concentration and spectral distribution of water droplets, but also influences the characteristics of ice crystals and graupel particles. With a larger number of CCN, more water droplets and ice crystals are produced and the growth of graupel is restrained. With a small quantity of CCN the production of large size water droplets are promoted by initially small concentrations of water droplets and ice crystals, leading to earlier formation of small size graupel and restraining the recycling growth of graupel, and thus inhibiting the formation of large size graupel (or small size hail). It can be concluded that both the macroscopic airflow and microphysical processes influence the formation and growth of large size graupel (or small size hail). In regions with heavy pollution, a high concentration of CCN may restrain the formation of graupel and hail, and in extremely clean regions, excessively low concentrations of CCN may also limit the formation of large size graupel (hail).
文摘Dispersion and nonlinear distortion have an effect on transmission performanc es of optic al fiber transimission systems. The schemes of dispersion compensation and nonli near distortion self-compens ation in telecom-CATV co-network transmission systems are reported, followed by investigation on (1) the impact of dispersion compensation fiber (DCF) on fi ber nonlinear effects with a cascade of erbium-doped fiber amplifiers (EDFAs) an d different dispersion compensation schemes, (2) the impact of the complex on th e total nonlinear distortion induced by EDFA gain tilt and the light source. As a result , dispersion compensation optimal scheme and EDFA negative gain tilt are suggest ed as a solution to dispersion compensation and the nonlinear distortion self-c ompensation.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11272105)the Heilongjiang Province Science Foundation for Youths(Grant No.QC2015003)the Harbin Science and Technology Bureau Young Talent Reserve Project(Grant No.RC2016QN001011,RC2016QN017023)
文摘The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model combined with the improved"Generalized Method of Cells( GMC) "is developed,which is used to predict the macro bearing strength and to characterize the micro constitute material failure of the bolt jointed composite laminates structure. Both the contact conditions at the bolt/hole boundary and the contact conditions at the specimen/fixture boundary,progressive damage,and the material properties degradation are all taken account into the analytical model. Thus,the numerical simulation results agree well with the experimental results.Finally,the effect of the fixture on the testing results is characterized. The results show that the incomplete contaction between the fixture and the specimen or the lack of the lateral constraint on the specimen will affect the limited bearing strength and the offset bearing strength of the bolt jointed composite laminates structure. In addition,the lower support rigid of the fixture will affect the rigid of the bolt jointed composite laminates structure.
文摘The non-linear Fokker-Planck equation arises in describing the evolution of stochastic system, which is a variant of the Boltzmann equation modeling the evolution of the random system with Brownian motion, where the collision term is replaced by a drift-diffusion operator. This model conserves mass, momentum and energy;the dissipation is much weaker than that in a simplified model we considered before which conserved only mass, thus more difficult to analyze. The macro-micro decomposition of the solution around the local Maxwellian introduced by T.-P. Liu, T. Yang and S.-H. Yu for Boltzmann equation is used, to reformulate the model into a fluid-type system incorporate viscosity and heat diffusion terms, coupled with an equation of the microscopic part. The viscosity and heat diffusion terms can give dissipative mechanism for the analysis of the model.
文摘It’s the basic premise of promoting the healthy development of rural finance and strengthen-ing macro-prudential supervision to measure the systemic risk of rural finance accurately.We establish the dynamic factor CAPM and make an all-round and multi-angle quantitative study on the systemic risk of rural finance in China by constructing macro-micro index system and using machine learning to reduce the dimension of high-dimensional data.Our results show that the dynamic factor CAPM of using macro-micro big data can evaluate systemic risk of rural finance more comprehensively and systematically,and machine learning performs well in processing high-dimensional data.In addition,China’s rural financial systemic risk is stable compared with the Shanghai and Shenzhen main markets,but it is also susceptible to macro and micro influ-enced factors.Finally,it is pointed out that the early warning system of rural financial systemic risk could be constructed at macro and micro level,respectively.
基金Supported by the National Natural Science Foundation of China(Grant No.50705027)the National High Technology Research and Development Program of China("863"Program)(Grant No.2007AA04Z315)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS200804B)
文摘A macro-micro dual-drive positioning system showing good potential for high acceleration and high precision positioning required in IC packaging applications is devised in this paper. The dual-drive positioning stage uses a VCM (voice coil motor) driven macro positioning stage and a PZT piezo-electric driven micro positioning stage. The coupling characteristics of the system are analyzed to produce a control structure with a micro positioning stage that can dynamically compensate for the positioning error produced by the macro positioning stage. Models of the two positioning stages are described. The models cover both the mechanism and the actuator. For the macro positioning stage, friction characteristics are taken into account, and a controller with an LQG (linear-quadratic-Gaussian) control algorithm combining a feed-forward compensation algorithm is derived. A PID controller is used to control the micro positioning stage. Detailed designs are derived for the proposed approach, and the performance is validated by simulation.
基金the National Natural Science Foundation of China (No. 60305008)
文摘This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manipulator possesses the advantages of wide operating range, high speed, and low energy consumption, but the disadvantage of a low tracking precision. The macro-micro manipulator system improves tracking performance by compensating for the endpoint tracking error while maintaining the advantages of the flexible macro manipulator. A trajectory planning scheme was built utilizing the task space division method. The division point is chosen to optimize the error compensation and energy consumption for the whole system. Then movements of the macro-micro manipulator can be determined using separate inverse kinematic models. Simulation results for a planar 4-DOF macro-micro manipulator system are presented to show the effectiveness of the control system.
基金partly supported by the National Natural Science Foundation of China(No.61174047)the School Basic Foundation of Northwestern Polytechnical University(No.GCKYI006)the Fundamental Research Funds for the Central Universities(No.HEUCFR1214)
文摘In this paper, a composite control scheme for macro-micro dual-drive positioning stage with high accel- eration and high precision is proposed. The objective of control is to improve the precision by reducing the influence of system vibration and external noise. The positioning stage is composed of voice coil motor (VCM) as macro driver and piezoelectric actuator (PEA) as micro driver. The precision of the macro drive positioning stage is improved by the com- bined PID control with adaptive Kalman filter (AKF). AKF is used to compensate VCM vibration (as the virtual noise) and the external noise. The control scheme of the micro drive positioning stage is presented as the integrated one with PID and intelligent adaptive inverse control approach to compensate the positioning error caused by macro drive positioning stage. A dynamic recurrent neural networks (DRNN) based inverse control approach is proposed to offset the hysteresis nonlinearity of PEA. Simulations show the positioning precision of macro-micro dual-drive stage is clearly improved via the proposed control scheme.
基金This research was supported by the National Natural Science Foundation of China (51479027, 51539008).
文摘Here, we present a numerical investigation of the mechanical behavior of ellipsoids under triaxial com- pression for a range of aspect ratios. Our simulations use a multi-sphere approach in a three-dimensional discrete element method. All assemblies were prepared at their densest condition, and triaxial compres- sion tests were performed up to extremely large strains, until a critical state was reached. The stress-strain relationship and the void ratio-strain behavior were evaluated. We found that the stress-dilatancy rela- tionship of ellipsoids with different aspect ratios could be expressed as a linear equation. In particular, the aspect ratio influenced the position of the critical state lines for these assemblies. Particle-scale char- acteristics at the critical state indicate that particles tend to be flat lying, and the obstruction of particle rotation that occurs with longer particles affects their contact mechanics. Lastly, anisotropic coefficients related to aspect ratio were investigated to probe the microscopic origins of the macroscopic behavior. A detailed analysis of geometrical and mechanical anisotropies revealed the microscopic mechanisms underlying the dependency of peak and residual strengths on aspect ratio.
基金the fellowship of China Postdoctoral Science Foundation(Grant No.2020M672309)。
文摘55NiCrMoV7 hot-work die steel is mainly used to manufacture heavy forgings in the fields of aerospace and automobile.This study aims to clarify the effects of heat treatment on the microstructural evolution and mechanical properties of the steel,in order to find out an optimal heat treatment scheme to obtain an excellent balance of strength,ductility and toughness.The steel was quenched at temperature from 790℃ to 910℃ followed by tempering treatments of 100–650℃ for 5 h.The mechanical property tests were carried out by tensile,impact toughness and hardness.Optical microscope(OM),scanning electron microscope(SEM)and transmission electron microscope(TEM)were used to observe the austenite grains,lath martensite,carbides and fracture morphology.The results show that the quenching temperature mainly influences the austenite grain size and the volume fraction of undissolved carbides(UCs),while the tempering temperature mainly influences the size and morphology of the martensite with a body centered cubic(BCC)and the carbides with a face centered cubic(FCC).The mechanical properties of the steel,including yield and tensile strength,ductility,impact toughness and hardness,get an excellent balance at a quenching range of 850–870C.As the tempering temperature increases,the yield and tensile strength and hardness decrease,while the ductility and impact toughness increase.These variation trends can be further verified by fracture SEM observation and analysis.Combined with a macro-micro coupled finite element(MMFE)modeling technique,the cooling rate,microstructural evolution and yield strength of the steel were predicted and compared with the tested data.