Electrochemical conversion of carbon dioxide(CO_(2))to higher-value products provides a forward-looking way to solve the problems of environmental pollution and energy shortage.However,the low solubility of CO_(2)in a...Electrochemical conversion of carbon dioxide(CO_(2))to higher-value products provides a forward-looking way to solve the problems of environmental pollution and energy shortage.However,the low solubility of CO_(2)in aqueous electrolytes,sluggish kinetics,and low selectivity hamper the efficient conversion of CO_(2).Here,we report a Au-based hybrid nanomaterial by modifying Au nanoparticles(NPs)with the macrocyclic molecule cucurbit[6]uril(Au@CB[6]).Au@CB[6]displays the optimal selectivity of CO,with the highest CO Faraday efficiency(FECO)reaching 99.50%at−0.6 V vs.reversible hydrogen electrode(RHE).The partial current density of CO formed by Au@CB[6]increases dramatically,as 3.18 mA/cm2 at−0.6 V,which is more than ten times as that of oleylamine-coated Au NPs(Au@OAm,0.31 mA/cm2).Operando electrochemical measurement combined with density functional theory(DFT)calculations reveals that CB[6]can gather CO_(2)and lead the increased local CO_(2)concentration near metal interface,which realizes significantly enhanced electrochemical CO_(2)reduction reaction(CO_(2)RR)performance.展开更多
基金the financial support from the National Key R&D Program of China(Nos.2017YFA0700103 and 2018YFA0704502)the National Natural Science Foundation of China(No.22033008),and Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZZ103).
文摘Electrochemical conversion of carbon dioxide(CO_(2))to higher-value products provides a forward-looking way to solve the problems of environmental pollution and energy shortage.However,the low solubility of CO_(2)in aqueous electrolytes,sluggish kinetics,and low selectivity hamper the efficient conversion of CO_(2).Here,we report a Au-based hybrid nanomaterial by modifying Au nanoparticles(NPs)with the macrocyclic molecule cucurbit[6]uril(Au@CB[6]).Au@CB[6]displays the optimal selectivity of CO,with the highest CO Faraday efficiency(FECO)reaching 99.50%at−0.6 V vs.reversible hydrogen electrode(RHE).The partial current density of CO formed by Au@CB[6]increases dramatically,as 3.18 mA/cm2 at−0.6 V,which is more than ten times as that of oleylamine-coated Au NPs(Au@OAm,0.31 mA/cm2).Operando electrochemical measurement combined with density functional theory(DFT)calculations reveals that CB[6]can gather CO_(2)and lead the increased local CO_(2)concentration near metal interface,which realizes significantly enhanced electrochemical CO_(2)reduction reaction(CO_(2)RR)performance.