In the presence of inhibitors, the macroscopical oxidation kinetics of calcium sulfite, the main byproduct in wet limestone scrubbing, was studied for the first time by adding different inhibitors and varying pH, conc...In the presence of inhibitors, the macroscopical oxidation kinetics of calcium sulfite, the main byproduct in wet limestone scrubbing, was studied for the first time by adding different inhibitors and varying pH, concentration of calcium sulfite, oxygen partial pressure, concentration of inhibitors and temperature. The mathematical model about the general oxidation reaction was established, which was controlled by three steps involving dissolution of calcium sulfite, mass transfer of oxygen and chemical reaction in the solution. It was concluded that the general reaction was controlled by mass transfer of oxygen under uncatalyzed conditions, while it was controlled by dissolution of calcium sulfite after adding three kinds of inhibitors. Thus, the theory was provided for investigating the mechanism and oxidation kinetics of sulfite. The beneficial references were also supplied for design of oxidation technics in the wet limestone scrubbing.展开更多
The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the chan...The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the change of macroscopic characteristics and evolution of micro-structure would be induced,ultimately resulting in different degrees of thermal damage in rocks.To better understand the thermal damage mechanism of different rocks and its effect on the rock performance,this study reviews a large number of test results of rock specimens experiencing heating and cooling treatment in the laboratory.Firstly,the variations of macroscopic behaviors,including physical parameters,mechanical parameters,thermal conductivity and permeability,are examined.The variations of mechanical parameters with thermal treatment variables(i.e.temperature or the number of thermal cycles)are divided into four types.Secondly,several measuring methods for microstructure,such as polarizing microscopy,fluorescent method,scanning electron microscopy(SEM),X-ray computerized tomography(CT),acoustic emission(AE)and ultrasonic technique,are introduced.Furthermore,the effect of thermal damage on the mechanical parameters of rocks in response to different thermal treatments,involving temperature magnitude,cooling method and thermal cycle,are discussed.Finally,the limitations and prospects for the research of rock thermal damage are proposed.展开更多
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t...Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.展开更多
Elementary information theory is used to model cybersecurity complexity, where the model assumes that security risk management is a binomial stochastic process. Complexity is shown to increase exponentially with the n...Elementary information theory is used to model cybersecurity complexity, where the model assumes that security risk management is a binomial stochastic process. Complexity is shown to increase exponentially with the number of vulnerabilities in combination with security risk management entropy. However, vulnerabilities can be either local or non-local, where the former is confined to networked elements and the latter results from interactions between elements. Furthermore, interactions involve multiple methods of communication, where each method can contain vulnerabilities specific to that method. Importantly, the number of possible interactions scales quadratically with the number of elements in standard network topologies. Minimizing these interactions can significantly reduce the number of vulnerabilities and the accompanying complexity. Two network configurations that yield sub-quadratic and linear scaling relations are presented.展开更多
Traditional credit evaluation models failed to produce partial results due to their ignorance of the whole risks of credit environment. An excellent evaluating model on credit should take into account the credit envir...Traditional credit evaluation models failed to produce partial results due to their ignorance of the whole risks of credit environment. An excellent evaluating model on credit should take into account the credit environment impersonally and comprehensively. In this paper, a novel area's macroscopical credit evaluation model based on Fuzzy Neural Network is constructed. A set of scientific and reasonable evaluating indexes are extracted from feature space of macroscopical credit, then based on these indexes a Fuzzy Neural Network (FNN) model on credit evaluation is constructed and applied into the practical credit evaluation of some Chinese provinces randomly selected for the first time. Results show our model is both practical and capable.展开更多
Synthesis of multi-color laser pulses has been developed as a promising way to improve low conversion efficiency of high-order harmonic generation(HHG). Here we systematically study the effect of laser focus in a two-...Synthesis of multi-color laser pulses has been developed as a promising way to improve low conversion efficiency of high-order harmonic generation(HHG). Here we systematically study the effect of laser focus in a two-color waveform on generation of macroscopic HHG in soft x-rays. We find that the dependence of HHG yields on laser focus at low or high gas pressure is sensitive to the characteristics of single-atom harmonic response, in which “short”-or “long”-trajectory emissions can be selectively controlled by changing the waveform of two-color synthesized laser pulse. We uncover the phase-matching mechanism of HHG in the gas medium by examining the propagation of the two-color waveform and the evolution of time-frequency emissions of high-harmonic field. We further reveal that the nonlinear effects, such as geometric phase, atomic dispersion, and plasma defocusing, are responsible for modification of two-color waveform upon propagation. This work can be used to find better macroscopic conditions for generating soft x-ray HHG by employing two-color optimized waveforms.展开更多
Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)is an excellent investigation to diagnose pancreatic lesions and has shown high accuracy for its use in pathologic diagnosis.Recently,macroscopic on-site evaluat...Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)is an excellent investigation to diagnose pancreatic lesions and has shown high accuracy for its use in pathologic diagnosis.Recently,macroscopic on-site evaluation(MOSE)performed by an endoscopist was introduced as an alternative to rapid on-site cytologic evaluation to increase the diagnostic yield of EUS-FNB.The MOSE of the biopsy can estimate the adequacy of the sample directly by the macroscopic evaluation of the core tissue obtained from EUS-FNB.Isolated pancreatic tuberculosis is extremely rare and difficult to diagnose because of its non-specific signs and symptoms.Therefore,this challenging diagnosis is based on endoscopy,imaging,and the bacteriological and histological examination of tissue biopsies.This uncommon presentation of tuberculosis can be revealed as pancreatic mass mimicking cancer.EUS-FNB can be very useful in providing a valuable histopathological diagnosis.A calcified lesion with a cheesy core in MOSE must be suggestive of tuberculosis,leading to the request of the GeneXpert,which can detect Mycobacterium tuberculosis deoxyribonucleic acid and resistance to rifampicin.A decent diagnostic strategy is crucial to prevent unnecessary surgical resection and to supply conservative management with antitubercular therapy.展开更多
We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger ...We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger equation(TDSE).We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition,and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good.We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent.This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG.展开更多
A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result...A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result in more serious congestion.On the other hand,a low-frequency bus service would increase the waiting time for passengers and would not reduce the use of private cars.It is important to strike a balance between high and low frequencies in order to minimize the total delays for all road users.It is critical to formulate the impacts of bus frequency on congestion dynamics and mode choices.However,as far as the authors know,most proposed bus frequency optimization formulations are based on static demand and the Bureau of Public Roads function,and do not properly consider the congestion dynamics and their impacts on mode choices.To fill this gap,this paper proposes a bi-level optimization model.A three-dimensional Macroscopic Fundamental Diagram based modeling approach is developed to capture the bi-modal congestion dynamics.A variational inequality model for the user equilibrium in mode choices is presented and solved using a double projection algorithm.A surrogate model-based algorithm is used to solve the bi-level programming problem.展开更多
In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a wat...In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion.Effects of various factors on bubble disintegration and dispersion were investigated.These factors were stirring mode,eccentricity and rotation speed,nozzle structure,nozzle immersion depth,and gas flow rate.Gas injection from a nozzle at the end of the impeller shaft and from an immersed lance was studied.Under eccentric stirring,a vortex was formed away from the shaft.Small bubbles were produced in the strong turbulence or high shear stress field near the rotating impeller and moved in the direction to the vortex keeping up with the macroscopic flow induced by the mechanical stirring.Thus small bubbles could disperse widely in the bath under eccentric stirring with unidirectional rotation.展开更多
The conventional measurement of a relative permeability curve (RPC) is usually conducted at room temperature, which is much lower than the reservoir temperature. Previous research work on high temperature relative...The conventional measurement of a relative permeability curve (RPC) is usually conducted at room temperature, which is much lower than the reservoir temperature. Previous research work on high temperature relative permeability mainly take oil-wetted cores as objective. In this paper, laboratory test and measurement are conducted using water-wet cores from the Lunnan Oilfield. Since irreducible water saturation (Swi) is a critical factor that affects and controls the relative permeability curve, special tests are conducted to measure Swi at different temperatures for water-wet cores in the course of the experiment of relative permeability. The experimental results indicate that for the water-wet cores Swi decreased with the increasing temperature from ambient to 105℃,and the relative permeability curve shifted in a low water saturation direction, i.e. moved toward the left, while it moved toward the right for oil wetness reservoirs. Seen from both macroscopic and microcosmic view, the reasons and mechanisms of relative permeability change with temperature are discussed, and factors including core wetness, viscosity force, capillary forces, contact angle, interfacial tension change are considered.展开更多
The macroscopic fundamental diagram( MFD) is studied to obtain the aggregate behavior of traffic in cities. This paper investigates the existence and the characteristics of different types of daily MFD for the Shang...The macroscopic fundamental diagram( MFD) is studied to obtain the aggregate behavior of traffic in cities. This paper investigates the existence and the characteristics of different types of daily MFD for the Shanghai urban expressway network. The existence of MFD in the Shanghai urban expressway network is proved based on two weeks' data.Moreover, the hysteresis phenomena is present in most days and the network exhibits different hysteresis loops under different traffic situations. The relationship between the hysteresis phenomena and the inhomogeneity of traffic distribution is verified. The MFDs in the years of 2009 and 2012 are compared. The hysteresis loop still exists in 2012, which further verifies the existence of the hysteresis phenomenon. The direct relationship between the length of the hysteresis loop( ΔO) and the congestion is proved based on sufficient data. The width of the hysteresis loop, i. e., the drop in network flow( ΔQ) has no relationship with the congestion, and it varies from day to day under different traffic situations.展开更多
A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using...A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using the time series trigonometric function analysis method;the service discharge based macroscopic model of network performance is established using the network structuring method;a relatively satisfactory mathematical model for the optimal control of water distribution network is put forward in view of security and economy,and solved by the constrained mixed discrete variable complex arithmetic.The model is applied in many examples and the results are satisfactory.展开更多
The rapid identification based on InSAR technology was proved to be effective in our emergency investigation of surface ruptures and geohazards induced by the Yushu earthquake.The earthquake-generating fault of the Yu...The rapid identification based on InSAR technology was proved to be effective in our emergency investigation of surface ruptures and geohazards induced by the Yushu earthquake.The earthquake-generating fault of the Yushu earthquake is the Yushu section of the Garze-Yushu faults zone.It strikes NWW-NW,23 km long near the Yushu County seat,dominated by left-lateral strike slip,and appearing as a surface rupture zone.The macroscopic epicenter is positioned at Guo-yang-yan -song-duo of Gyegu Town(33°03'11"N,96°51'26"E),where the co-seismic horizontal offset measured is 1.75 m.Geohazards induced by the Yushu earthquake are mainly rockfalls,landslides,debris flows, and unstable slopes.They are controlled by the earthquake-generating fault and are mostly distributed along it.There are several geohazard chains having been established,such as earthquake,canal damage,soil liquefying,landslide-debris flow,earthquake,soil liquefying,roadbed deformation,etc.In order to prevent seismic hazards,generally,where there is a visible surface rupture induced by the Yushu earthquake,reconstruction should be at least beyond 20 m,on each side,from it.Sufficient attention should also be given to potential geohazards or geohazard chains induced by the earthquake.展开更多
Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading,and research on the cyclic plasticity is fundamental to investigate the correspondin...Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading,and research on the cyclic plasticity is fundamental to investigate the corresponding fatigue failure.Thus,this work reviews the progress in the cyclic plasticity of Mg alloys.First,the existing macroscopic and microscopic experimental results of Mg alloys are summarized.Then,corresponding macroscopic phenomenological constitutive models and crystal plasticity-based models are reviewed.Finally,some conclusions and recommended topics on the cyclic plasticity of Mg alloys are provided to boost the further development and application of Mg alloys.展开更多
The appearance of macroscopic segregation in ZL205A alloy castings bears a super resemblance to theappearance of shrinkage porosity, and the chemical composition of the segregation is Al2Cu whose microstructure isin t...The appearance of macroscopic segregation in ZL205A alloy castings bears a super resemblance to theappearance of shrinkage porosity, and the chemical composition of the segregation is Al2Cu whose microstructure isin the form of dentrite or skeleton crystal. According to the characteristic of nebulous segregation, the formationprocess could be divided into two steps by the eutectic temperature of Al2Cu. Then a criterion for each of the twosteps is brought forward on the basis of the shrinkage porosity criterion of low pressure casting.展开更多
The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 ...The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 nuclei(Z ≥ 8, N ≥ 8) released in the latest Atomic Mass Evaluation AME2020 and the deviations between the fitting result of the liquid drop model(LDM)and data from AME2020 for each nucleus were obtained.To compensate for the deviations and investigate the possible ignored physics in the LDM, the MTL-ANN method was introduced in the model. Compared to the single-task learning(STL) method, this new network has a powerful ability to simultaneously learn multi-nuclear properties,such as the binding energies and single neutron and proton separation energies. Moreover, it is highly effective in reducing the risk of overfitting and achieving better predictions. Consequently, good predictions can be obtained using this nuclear mass model for both the training and validation datasets and for the testing dataset. In detail, the global root mean square(RMS) of the binding energy is effectively reduced from approximately 2.4 MeV of LDM to the current 0.2 MeV, and the RMS of Sn, Spcan also reach approximately 0.2 MeV. Moreover, compared to STL, for the training and validation sets, 3-9% improvement can be achieved with the binding energy, and 20-30% improvement for S_(n), S_(p);for the testing sets, the reduction in deviations can even reach 30-40%, which significantly illustrates the advantage of the current MTL.展开更多
An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EM...An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EMS on the solidification macrostructure of high carbon steel were investigated. The results show that the billet quality is not well controlled under the condition of working current and frequency with EMS, in which the subsurface crack of grade 1.0-2.0 ups to 38.09%, the central pipe of grade 1.0-1.5 reaches to 14.28%, and the central porosity of grade 1.5 is 14.29%. The parameters of current 260 A and frequency 8 Hz as the final optimum scheme has a remarkable effect for improving the macroscopic quality of billet, in which the subsurface crack, central pipe and skin blowhole are all disappeared, and the central porosity and carbon segregation are also well improved.展开更多
Firstly, the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory. Th...Firstly, the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory. The concept of macroscopic solubility product and its relation with accumulated ore dissolving ratio were presented, which are used in the numerical model of dissolving and driving exploitation of potassium salt in Qarhan Salt Lake. And secondly, with a model forming idea of transport model for reacting solutes in the multi-component fresh groundwater system in porous media being a reference, a two-dimensional transport model coupled with a series of chemical reactions in a multi-component brine porous system (salt deposits) was developed by using the Pitzer theory. Meanwhile, the model was applied to model potassium/magnesium transport in Qarhan Salt Lake in order to study the transfer law of solid and liquid phases in the dissolving and driving process and to design the optimal injection/abstraction strategy for dissolving and capturing maximum Potassium/ Magnesium in the mining of salt deposits in Qarhan Salt Lake.展开更多
The use of operating microscopes is limited by the focal length.Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other.The longer focal length (more...The use of operating microscopes is limited by the focal length.Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other.The longer focal length (more than 1 000 mm) of an operating telescope permits a position away from the operating field,above the surgeon and out of the field of view.This gives the telescope an advantage over an operating microscope.We developed a telescopic system using screen-imaging guidance and a modified portable video macroscope constructed from a Computar MLH-10 × macro lens,a DFK-21AU04 USB CCD Camera and a Dell laptop computer as monitor screen.This system was used to establish a middle cerebral artery occlusion model in rats.Results showed that magnification of the modified portable video macroscope was appropriate (5-20 ×) even though the Computar MLH-10 × macro lens was placed 800 mm away from the operating field rather than at the specified working distance of 152.4 mm with a zoom of 1-40 ×.The screen-imaging telescopic technique was clear,life-like,stereoscopic and matched the actual operation.Screen-imaging guidance led to an accurate,smooth,minimally invasive and comparatively easy surgical procedure.Success rate of the model establishment evaluated by neurological function using the modified neurological score system was 74.07%.There was no significant difference in model establishment time,sensorimotor deficit and infarct volume percentage.Our findings indicate that the telescopic lens is effective in the screen surgical operation mode referred to as "long distance observation and short distance operation" and that screen-imaging guidance using an modified portable video macroscope can be utilized for the establishment of a middle cerebral artery occlusion model and micro-neurosurgery.展开更多
基金The National Basic Research Program(973) of China(No. JK00020)
文摘In the presence of inhibitors, the macroscopical oxidation kinetics of calcium sulfite, the main byproduct in wet limestone scrubbing, was studied for the first time by adding different inhibitors and varying pH, concentration of calcium sulfite, oxygen partial pressure, concentration of inhibitors and temperature. The mathematical model about the general oxidation reaction was established, which was controlled by three steps involving dissolution of calcium sulfite, mass transfer of oxygen and chemical reaction in the solution. It was concluded that the general reaction was controlled by mass transfer of oxygen under uncatalyzed conditions, while it was controlled by dissolution of calcium sulfite after adding three kinds of inhibitors. Thus, the theory was provided for investigating the mechanism and oxidation kinetics of sulfite. The beneficial references were also supplied for design of oxidation technics in the wet limestone scrubbing.
基金supported by the National Key Research and Development Plan(Grant No.2022YFC2905700)Natural Science Foundation of Anhui Province(Grant No.2208085ME120)Key Research and Development Plan of Anhui Province(Grant No.2022m07020001).
文摘The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the change of macroscopic characteristics and evolution of micro-structure would be induced,ultimately resulting in different degrees of thermal damage in rocks.To better understand the thermal damage mechanism of different rocks and its effect on the rock performance,this study reviews a large number of test results of rock specimens experiencing heating and cooling treatment in the laboratory.Firstly,the variations of macroscopic behaviors,including physical parameters,mechanical parameters,thermal conductivity and permeability,are examined.The variations of mechanical parameters with thermal treatment variables(i.e.temperature or the number of thermal cycles)are divided into four types.Secondly,several measuring methods for microstructure,such as polarizing microscopy,fluorescent method,scanning electron microscopy(SEM),X-ray computerized tomography(CT),acoustic emission(AE)and ultrasonic technique,are introduced.Furthermore,the effect of thermal damage on the mechanical parameters of rocks in response to different thermal treatments,involving temperature magnitude,cooling method and thermal cycle,are discussed.Finally,the limitations and prospects for the research of rock thermal damage are proposed.
基金supported by the China Scholarship Council (CSC) (No.202206020149)the Academic Excellence Foundation of BUAA for PhD Students,the Funding Project of Science and Technology on Reliability and Environmental Engineering Laboratory (No.6142004210106).
文摘Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.
文摘Elementary information theory is used to model cybersecurity complexity, where the model assumes that security risk management is a binomial stochastic process. Complexity is shown to increase exponentially with the number of vulnerabilities in combination with security risk management entropy. However, vulnerabilities can be either local or non-local, where the former is confined to networked elements and the latter results from interactions between elements. Furthermore, interactions involve multiple methods of communication, where each method can contain vulnerabilities specific to that method. Importantly, the number of possible interactions scales quadratically with the number of elements in standard network topologies. Minimizing these interactions can significantly reduce the number of vulnerabilities and the accompanying complexity. Two network configurations that yield sub-quadratic and linear scaling relations are presented.
基金The research is supported by the Major Programs of Institute of Finance in Jinan University which is the Major Base of Social Science in Guangdong's Universities (04jdxm79001), the Research Program of Innovative Team of Jinan University (04sk2d03), National Natural Science Foundation of China(60574069) and the Soft Science Foundation of Guangdong Province (2005870101044)
文摘Traditional credit evaluation models failed to produce partial results due to their ignorance of the whole risks of credit environment. An excellent evaluating model on credit should take into account the credit environment impersonally and comprehensively. In this paper, a novel area's macroscopical credit evaluation model based on Fuzzy Neural Network is constructed. A set of scientific and reasonable evaluating indexes are extracted from feature space of macroscopical credit, then based on these indexes a Fuzzy Neural Network (FNN) model on credit evaluation is constructed and applied into the practical credit evaluation of some Chinese provinces randomly selected for the first time. Results show our model is both practical and capable.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.91950102,12274230,and 11834004)the Funding of Nanjing University of Science and Technology (Grant No.TSXK2022D005)。
文摘Synthesis of multi-color laser pulses has been developed as a promising way to improve low conversion efficiency of high-order harmonic generation(HHG). Here we systematically study the effect of laser focus in a two-color waveform on generation of macroscopic HHG in soft x-rays. We find that the dependence of HHG yields on laser focus at low or high gas pressure is sensitive to the characteristics of single-atom harmonic response, in which “short”-or “long”-trajectory emissions can be selectively controlled by changing the waveform of two-color synthesized laser pulse. We uncover the phase-matching mechanism of HHG in the gas medium by examining the propagation of the two-color waveform and the evolution of time-frequency emissions of high-harmonic field. We further reveal that the nonlinear effects, such as geometric phase, atomic dispersion, and plasma defocusing, are responsible for modification of two-color waveform upon propagation. This work can be used to find better macroscopic conditions for generating soft x-ray HHG by employing two-color optimized waveforms.
文摘Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)is an excellent investigation to diagnose pancreatic lesions and has shown high accuracy for its use in pathologic diagnosis.Recently,macroscopic on-site evaluation(MOSE)performed by an endoscopist was introduced as an alternative to rapid on-site cytologic evaluation to increase the diagnostic yield of EUS-FNB.The MOSE of the biopsy can estimate the adequacy of the sample directly by the macroscopic evaluation of the core tissue obtained from EUS-FNB.Isolated pancreatic tuberculosis is extremely rare and difficult to diagnose because of its non-specific signs and symptoms.Therefore,this challenging diagnosis is based on endoscopy,imaging,and the bacteriological and histological examination of tissue biopsies.This uncommon presentation of tuberculosis can be revealed as pancreatic mass mimicking cancer.EUS-FNB can be very useful in providing a valuable histopathological diagnosis.A calcified lesion with a cheesy core in MOSE must be suggestive of tuberculosis,leading to the request of the GeneXpert,which can detect Mycobacterium tuberculosis deoxyribonucleic acid and resistance to rifampicin.A decent diagnostic strategy is crucial to prevent unnecessary surgical resection and to supply conservative management with antitubercular therapy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274230,91950102,and 11834004)the Funding of Nanjing University of Science and Technology (Grant No.TSXK2022D005)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China (Grant No.KYCX230443)。
文摘We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger equation(TDSE).We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition,and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good.We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent.This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG.
基金supported by the National Natural Science Foundation of China(Grant No.72201088,71871077,71925001)the Fundamental Research Funds for the Central Universities of China(Grant No.PA2022GDSK0040,JZ2023YQTD0073),which are gratefully acknowledged.
文摘A properly designed public transport system is expected to improve traffic efficiency.A high-frequency bus service would decrease the waiting time for passengers,but the interaction between buses and cars might result in more serious congestion.On the other hand,a low-frequency bus service would increase the waiting time for passengers and would not reduce the use of private cars.It is important to strike a balance between high and low frequencies in order to minimize the total delays for all road users.It is critical to formulate the impacts of bus frequency on congestion dynamics and mode choices.However,as far as the authors know,most proposed bus frequency optimization formulations are based on static demand and the Bureau of Public Roads function,and do not properly consider the congestion dynamics and their impacts on mode choices.To fill this gap,this paper proposes a bi-level optimization model.A three-dimensional Macroscopic Fundamental Diagram based modeling approach is developed to capture the bi-modal congestion dynamics.A variational inequality model for the user equilibrium in mode choices is presented and solved using a double projection algorithm.A surrogate model-based algorithm is used to solve the bi-level programming problem.
基金Projects (50974035,51074047) supported by the National Natural Science Foundation of ChinaProject (20090407) supported by the Doctoral Fund of Ministry of Education,ChinaProject (200921007) supported by Liaoning Key Science and Technology,China
文摘In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion.Effects of various factors on bubble disintegration and dispersion were investigated.These factors were stirring mode,eccentricity and rotation speed,nozzle structure,nozzle immersion depth,and gas flow rate.Gas injection from a nozzle at the end of the impeller shaft and from an immersed lance was studied.Under eccentric stirring,a vortex was formed away from the shaft.Small bubbles were produced in the strong turbulence or high shear stress field near the rotating impeller and moved in the direction to the vortex keeping up with the macroscopic flow induced by the mechanical stirring.Thus small bubbles could disperse widely in the bath under eccentric stirring with unidirectional rotation.
文摘The conventional measurement of a relative permeability curve (RPC) is usually conducted at room temperature, which is much lower than the reservoir temperature. Previous research work on high temperature relative permeability mainly take oil-wetted cores as objective. In this paper, laboratory test and measurement are conducted using water-wet cores from the Lunnan Oilfield. Since irreducible water saturation (Swi) is a critical factor that affects and controls the relative permeability curve, special tests are conducted to measure Swi at different temperatures for water-wet cores in the course of the experiment of relative permeability. The experimental results indicate that for the water-wet cores Swi decreased with the increasing temperature from ambient to 105℃,and the relative permeability curve shifted in a low water saturation direction, i.e. moved toward the left, while it moved toward the right for oil wetness reservoirs. Seen from both macroscopic and microcosmic view, the reasons and mechanisms of relative permeability change with temperature are discussed, and factors including core wetness, viscosity force, capillary forces, contact angle, interfacial tension change are considered.
基金The National Natural Science Foundation of China(No.51238008)
文摘The macroscopic fundamental diagram( MFD) is studied to obtain the aggregate behavior of traffic in cities. This paper investigates the existence and the characteristics of different types of daily MFD for the Shanghai urban expressway network. The existence of MFD in the Shanghai urban expressway network is proved based on two weeks' data.Moreover, the hysteresis phenomena is present in most days and the network exhibits different hysteresis loops under different traffic situations. The relationship between the hysteresis phenomena and the inhomogeneity of traffic distribution is verified. The MFDs in the years of 2009 and 2012 are compared. The hysteresis loop still exists in 2012, which further verifies the existence of the hysteresis phenomenon. The direct relationship between the length of the hysteresis loop( ΔO) and the congestion is proved based on sufficient data. The width of the hysteresis loop, i. e., the drop in network flow( ΔQ) has no relationship with the congestion, and it varies from day to day under different traffic situations.
基金Foundation for University Key Teacher by the Min-istry of Education
文摘A systematic investigation is made on the problems which are related to the optimal control of the municipal water distribution network.A mathematical model of forecasting the water short term demand is proposed using the time series trigonometric function analysis method;the service discharge based macroscopic model of network performance is established using the network structuring method;a relatively satisfactory mathematical model for the optimal control of water distribution network is put forward in view of security and economy,and solved by the constrained mixed discrete variable complex arithmetic.The model is applied in many examples and the results are satisfactory.
基金supported by the National Natural Science Foundation of China(grant No.40902059)the Land Resource Survey Project of China Geological Survey (grant No.1212010914025,No.1212011014035)the Fundamental Research Fund of Institute of Geomechanics, CAGS(grant No.DZLXJK200906)
文摘The rapid identification based on InSAR technology was proved to be effective in our emergency investigation of surface ruptures and geohazards induced by the Yushu earthquake.The earthquake-generating fault of the Yushu earthquake is the Yushu section of the Garze-Yushu faults zone.It strikes NWW-NW,23 km long near the Yushu County seat,dominated by left-lateral strike slip,and appearing as a surface rupture zone.The macroscopic epicenter is positioned at Guo-yang-yan -song-duo of Gyegu Town(33°03'11"N,96°51'26"E),where the co-seismic horizontal offset measured is 1.75 m.Geohazards induced by the Yushu earthquake are mainly rockfalls,landslides,debris flows, and unstable slopes.They are controlled by the earthquake-generating fault and are mostly distributed along it.There are several geohazard chains having been established,such as earthquake,canal damage,soil liquefying,landslide-debris flow,earthquake,soil liquefying,roadbed deformation,etc.In order to prevent seismic hazards,generally,where there is a visible surface rupture induced by the Yushu earthquake,reconstruction should be at least beyond 20 m,on each side,from it.Sufficient attention should also be given to potential geohazards or geohazard chains induced by the earthquake.
基金financially supported by the National Natural Science Foundation of China(No.11532010)Doctoral Innovation Fund Program of Southwest Jiaotong University。
文摘Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading,and research on the cyclic plasticity is fundamental to investigate the corresponding fatigue failure.Thus,this work reviews the progress in the cyclic plasticity of Mg alloys.First,the existing macroscopic and microscopic experimental results of Mg alloys are summarized.Then,corresponding macroscopic phenomenological constitutive models and crystal plasticity-based models are reviewed.Finally,some conclusions and recommended topics on the cyclic plasticity of Mg alloys are provided to boost the further development and application of Mg alloys.
文摘The appearance of macroscopic segregation in ZL205A alloy castings bears a super resemblance to theappearance of shrinkage porosity, and the chemical composition of the segregation is Al2Cu whose microstructure isin the form of dentrite or skeleton crystal. According to the characteristic of nebulous segregation, the formationprocess could be divided into two steps by the eutectic temperature of Al2Cu. Then a criterion for each of the twosteps is brought forward on the basis of the shrinkage porosity criterion of low pressure casting.
基金supported by the National Natural Science Foundation of China(Nos.1187050492,12005303,and 12175170).
文摘The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 nuclei(Z ≥ 8, N ≥ 8) released in the latest Atomic Mass Evaluation AME2020 and the deviations between the fitting result of the liquid drop model(LDM)and data from AME2020 for each nucleus were obtained.To compensate for the deviations and investigate the possible ignored physics in the LDM, the MTL-ANN method was introduced in the model. Compared to the single-task learning(STL) method, this new network has a powerful ability to simultaneously learn multi-nuclear properties,such as the binding energies and single neutron and proton separation energies. Moreover, it is highly effective in reducing the risk of overfitting and achieving better predictions. Consequently, good predictions can be obtained using this nuclear mass model for both the training and validation datasets and for the testing dataset. In detail, the global root mean square(RMS) of the binding energy is effectively reduced from approximately 2.4 MeV of LDM to the current 0.2 MeV, and the RMS of Sn, Spcan also reach approximately 0.2 MeV. Moreover, compared to STL, for the training and validation sets, 3-9% improvement can be achieved with the binding energy, and 20-30% improvement for S_(n), S_(p);for the testing sets, the reduction in deviations can even reach 30-40%, which significantly illustrates the advantage of the current MTL.
基金supported by the Program for New Century Excellent Talents in University from the Ministry of Education of China (No.NCET-04-0285)
文摘An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EMS on the solidification macrostructure of high carbon steel were investigated. The results show that the billet quality is not well controlled under the condition of working current and frequency with EMS, in which the subsurface crack of grade 1.0-2.0 ups to 38.09%, the central pipe of grade 1.0-1.5 reaches to 14.28%, and the central porosity of grade 1.5 is 14.29%. The parameters of current 260 A and frequency 8 Hz as the final optimum scheme has a remarkable effect for improving the macroscopic quality of billet, in which the subsurface crack, central pipe and skin blowhole are all disappeared, and the central porosity and carbon segregation are also well improved.
基金the National Natural Science Foundation of China
文摘Firstly, the macroscopic chemical equilibrium state of a series of chemical reactions between intercrystal brine and its media salt layer (salt deposit) in Qarhan Salt Lake was studied by using the Pitzer theory. The concept of macroscopic solubility product and its relation with accumulated ore dissolving ratio were presented, which are used in the numerical model of dissolving and driving exploitation of potassium salt in Qarhan Salt Lake. And secondly, with a model forming idea of transport model for reacting solutes in the multi-component fresh groundwater system in porous media being a reference, a two-dimensional transport model coupled with a series of chemical reactions in a multi-component brine porous system (salt deposits) was developed by using the Pitzer theory. Meanwhile, the model was applied to model potassium/magnesium transport in Qarhan Salt Lake in order to study the transfer law of solid and liquid phases in the dissolving and driving process and to design the optimal injection/abstraction strategy for dissolving and capturing maximum Potassium/ Magnesium in the mining of salt deposits in Qarhan Salt Lake.
文摘The use of operating microscopes is limited by the focal length.Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other.The longer focal length (more than 1 000 mm) of an operating telescope permits a position away from the operating field,above the surgeon and out of the field of view.This gives the telescope an advantage over an operating microscope.We developed a telescopic system using screen-imaging guidance and a modified portable video macroscope constructed from a Computar MLH-10 × macro lens,a DFK-21AU04 USB CCD Camera and a Dell laptop computer as monitor screen.This system was used to establish a middle cerebral artery occlusion model in rats.Results showed that magnification of the modified portable video macroscope was appropriate (5-20 ×) even though the Computar MLH-10 × macro lens was placed 800 mm away from the operating field rather than at the specified working distance of 152.4 mm with a zoom of 1-40 ×.The screen-imaging telescopic technique was clear,life-like,stereoscopic and matched the actual operation.Screen-imaging guidance led to an accurate,smooth,minimally invasive and comparatively easy surgical procedure.Success rate of the model establishment evaluated by neurological function using the modified neurological score system was 74.07%.There was no significant difference in model establishment time,sensorimotor deficit and infarct volume percentage.Our findings indicate that the telescopic lens is effective in the screen surgical operation mode referred to as "long distance observation and short distance operation" and that screen-imaging guidance using an modified portable video macroscope can be utilized for the establishment of a middle cerebral artery occlusion model and micro-neurosurgery.