Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward tra...Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.展开更多
The 30-60-day intraseasonal oscillation(ISO) and 10-20-day ISO are two dominant oscillation modes over the western North Pacific during boreal summer.With daily data derived from eight CMIP5 models,changes of the ISO ...The 30-60-day intraseasonal oscillation(ISO) and 10-20-day ISO are two dominant oscillation modes over the western North Pacific during boreal summer.With daily data derived from eight CMIP5 models,changes of the ISO intensities are projected under the 1.5 and 2.0℃ global warming levels under the Representative Concentration Pathway(RCP) 4.5 and RCP8.5 scenarios.Most of the models agree that the ISO intensities increase along a belt region from the south Indochina Peninsula(ICP) to the east to the Philippines.The variation pattern shows little difference between different warming levels or scenarios.Results indicate that the spatial distribution of ISO anomalies is related with the variation of background fields.Enriched lower-level humidity and moist static energy favor the intensity increases of ISOs,which are projected to be larger over the whole western North Pacific,with the most conspicuous changes located over the east to the Philippines for humidity but over the south of the ICP for moist static energy.In contrast,the ISOs over the west to Indonesia and northeast to the Philippines decrease,which is consistent with the local descending motions.展开更多
The intraseasonal timescale is attractive in Central Africa (CA) where socio-economic activities are highly based on rainfall. The parameterization of intraseasonal oscillations (ISO) then remains a great challenge fo...The intraseasonal timescale is attractive in Central Africa (CA) where socio-economic activities are highly based on rainfall. The parameterization of intraseasonal oscillations (ISO) then remains a great challenge for the improvement of sub-seasonal to seasonal (S2S) prediction in this region. In this paper, we applied wavelet analysis on the 2.5° × 2.5° daily Outgoing Longwave Radiation (OLR, used here as rainfall proxy) to study the variations in the intensity of the 30 - 60-day intraseasonal rainfall oscillations over Central Africa within the last three decades (1980-2009). Results showed that the mean ISO intensity (ISOI) strongly fluctuates from day to another. The plots of monthly mean ISOIs revealed that the ISO activity is highly seasonal with above-normal ISO intensity during December-May and below-normal activity during June-November. The analysis of yearly mean ISOI showed that the ISOI exhibits strong interannual variations with the years of very low ISOIs such as 1982, 1994, 2001, 2007, 2009, 2015 and the years of very high ISOIs such as 1981, 1985, 1986, 989/1990, 1997, 2003, 2005. The regression analysis between ISOI and El Niño Southern Oscillation (ENSO) indices showed that even though the relationship between ISO and ENSO is nonlinear, warm ENSO (El Niño) events tend to reduce the ISOIs while cold ENSO (La Niña) events tend to increase it.展开更多
The Madden-Julian Oscillation (MJO) is investigated in two sets of 11-year records of observed precipitation, the daily mean Microwave Sounding Units (MSU) oceanic rainfall (Spencer, 1993) data and the pentad Climate ...The Madden-Julian Oscillation (MJO) is investigated in two sets of 11-year records of observed precipitation, the daily mean Microwave Sounding Units (MSU) oceanic rainfall (Spencer, 1993) data and the pentad Climate Prediction Center Merged Analysis of Precipitation (CMAP) data (Xie and Arkin, 1997). Obvious interannual variability is found in the MJO in the tropical Pacific. MJO is limited to the west of dateline in normal years while extends more east during the year of warm sea surface temperature (SST) appeared in the eastern Pacific (i.e., El Ni?o years of 1982–1983, 1986–1988, 1991–1992) and manifested in the central-eastern Pacific for several months. The most significant correlation between interannual variability of MJO in the central-eastern Pacific and SST was found in the vicinity of the Ni?o3 region. Forced by observed SST, CCM3 presents a realistic trend of interannual variability to MJO in the 11 years, with a smaller magnitude than that from the observation. Comparison between the two realizations of the CCM3 simulation, which are forced by weekly and monthly mean SST respectively, showed that the MJO activities resemble each other in central-eastern Pacific while there is discrepancy in the western Pacific. It is suggested that the interannual variability of MJO is controlled, to certain extent bythe powerful interannual variability of SST in the central-eastern Pacific. In the western Pacific, however, there were remarkable impacts of the intraseasonal oscillation of SST on the MJO, where there was active MJO around the year. The notable disagreement between simulated and observed MJO in the western Pacific may come from the lack of high frequency variation of SST force, or from the shortage of air sea interaction for the intraseasonal time scale. It might be of importance to the MJO which is unable to be represented in the atmospheric model. Key words Madden-Julian Oscillation - Precipitation - Sea surface temperature - Interannual variability This study was sponsored by Chinese Academy of Sciences under grant “Hundred Talents” for “Validation of Coupled Climate Models”, the National Natural Science Foundation of China (Grant No. 49823002), and Project G1999043808.展开更多
In the past decade there has been extensive research into tropical intraseasonal variability, one of the major components of the low frequency variability of the general atmospheric circulation. This paper briefly rev...In the past decade there has been extensive research into tropical intraseasonal variability, one of the major components of the low frequency variability of the general atmospheric circulation. This paper briefly reviews the state-of-the-art in this research area: the nature of the Madden-Julian Oscillation, its relation to monsoonal and extratropical circulations, and the current theoretical understandings.展开更多
The authors examined the Madden-Julian Oscillation(MJO) in stratospheric ozone during boreal winter using a simulation from the Specified Dynamics version of the Whole Atmosphere Community Climate Model(SD-WACCM) in 2...The authors examined the Madden-Julian Oscillation(MJO) in stratospheric ozone during boreal winter using a simulation from the Specified Dynamics version of the Whole Atmosphere Community Climate Model(SD-WACCM) in 2004 and 2010. Comparison with European Centre for Medium-Range Weather Forecasts Interim Reanalysis(ERA-Interim) data suggested that the model simulation represented well the three-dimensional structure of the MJO-related ozone anomalies in the upper troposphere and stratosphere(i.e., between 200 and 20 h Pa). The negative ozone anomalies were over the Tibetan Plateau and East Asia in MJO phases 3–7, when the MJO convective anomalies travelled from the equatorial Indian Ocean towards the equatorial western Pacific Ocean. Due to the different vertical structures of the MJO-related circulation anomalies, the MJO-related stratospheric ozone anomalies showed different vertical structure over the Tibetan Plateau(25–40°N, 75–105°E) and East Asia(25–40°N, 105–135°E). As a result of the positive bias in the model-calculated ozone in the upper troposphere and lower stratosphere, the amplitude of MJO-related stratospheric ozone column anomalies(10–16 Dobson Units(DU)) in the SD-WACCM simulation was slightly larger than that(8–14 DU) in the ERA-Interim reanalysis.展开更多
This study investigates whether and how the Madden-Julian Oscillation(MJO)influences persistent extreme cold events(PECEs),a major type of natural disaster in boreal winter,over Northeast China.Significantly increased...This study investigates whether and how the Madden-Julian Oscillation(MJO)influences persistent extreme cold events(PECEs),a major type of natural disaster in boreal winter,over Northeast China.Significantly increased occurrence probabilities of PECEs over Northeast China are observed in phases 3 and 5 of the MJO,when MJOrelated convection is located over the eastern Indian Ocean and the western Pacific,respectively.Using the temperature tendency equation,it is found that the physical processes resulting in the cooling effects required for the occurrence of PECEs are distinct in the two phases of the MJO when MJO-related convection is consistently located over the warm pool area.The PECEs in phase 3 of the MJO mainly occur as a result of adiabatic cooling associated with ascending motion of the low-pressure anomaly over Northeast Asia.The cooling effect associated with phase 5 is stronger and longer than that in phase 3.The PECEs associated with phase 5 of the MJO are linked with the northwesterly cold advection of a cyclonic anomaly,which is part of the subtropical Rossby wave train induced by MJO-related convection in the tropical western Pacific.展开更多
A modified continuous-variable quantum key distribution (CVQKD) protocol is proposed by originating the entangled source from a malicious third party Eve in the middle instead of generating it from the trustworthy A...A modified continuous-variable quantum key distribution (CVQKD) protocol is proposed by originating the entangled source from a malicious third party Eve in the middle instead of generating it from the trustworthy Alice or Bob. This method is able to enhance the efficiency of the CVQKD scheme attacked by local oscillator (LO) intensity attack in terms of the generated secret key rate in quantum communication. The other indication of the improvement is that the maximum transmission distance and the maximum loss tolerance can be increased significantly, especially for CVQKD schemes based on homodyne detection.展开更多
By using the long-term observed hydro-meteorological data (1985-2002) from the Tropical Atmosphere Ocean System (TAO) during the international Tropical Ocean and Global Atmosphere (TOGA) experiment, the key parameters...By using the long-term observed hydro-meteorological data (1985-2002) from the Tropical Atmosphere Ocean System (TAO) during the international Tropical Ocean and Global Atmosphere (TOGA) experiment, the key parameters of the Sea Surface Temperature (SST), thermocline depth, surface sensible heat flux and latent heat flux, and the pseudo wind stress in the Westen Equatorial Ocean are calculated in this paper. On the basis of the calculation, the response of upper layer heat structure in the Westen Pacific Warm Pool to the mean Madden-Julian Oscillation (MJO) and its relation to the El Nio events are analyzed. The results show that within the MJO frequency band (42-108 d), the distributions of sea surface wind stress and upper ocean temperature have several spatial-temporal variation structures. Among these structures, the type-I surface pseudo wind stress field plays the role of inhibiting the eastward transport of ocean heat capacity, while the type-II strengthens the heat capacity spreading eastward. Therefore the type-II surface pseudo wind stress field is the characteristic wind field that provokes El Nio events. During calm periods (July-September) of the wind stress variations, the sensible and latent heat capacity fluxes change considerably, mostly in the region between 137°-140°E, while to the east of 150°E, the heat capacity flux changes less.\ In the mean MJO state, the type-I surface pseudo wind stress field structure dominates in the Western Pacific. This is why El Nio events can not occur every year. However, when the type-II and type-III surface pseudo wind stress field structures are dominant, an El Nio event is likely to occur. In this case, if the heat capacity of the Western Pacific Warm Pool is transported eastward and combined with the Equatorial Pacific heat capacity spreading eastward, El Nio events will soon occur.展开更多
The Madden-Julian Oscillation is one of the large-scale climate change patterns in the maritime tropics,with sub-seasonal time periods of 30 to 60 days affecting tropical and subtropical regions.This phenomenon can ca...The Madden-Julian Oscillation is one of the large-scale climate change patterns in the maritime tropics,with sub-seasonal time periods of 30 to 60 days affecting tropical and subtropical regions.This phenomenon can cause changes in various quantities of the atmosphere and ocean,such as pressure,sea surface temperature,and the rate of evaporation from the ocean surface in tropical regions.In this research,the effects of Madden-Julian fluctuation on the weather elements of Iran have been investigated with the aim of knowing the effects of different phases in order to improve the quality of forecasts and benefits in territorial planning.At first,the daily rainfall data of 1980-2020 were received from the National Meteorological Organization and quality controlled.Using the Wheeler and Hendon method,the two main components RMM1 and RMM2 were analyzed,based on which the amplitude of the above two components is considered as the main indicator of the intensity and weakness of this fluctuation.This index is based on the experimental orthogonal functions of the meteorological fields,including the average wind levels of 850 and 200 hectopascals and outgoing long wave radiation(OLR)between the latitudes of 20 degrees south and 20 degrees north.The clustering of the 7-day sequence with a component above 1 was used as the basis for clustering all eight phases,and by calculating the abnormality of each phase compared to its long term in the DJF time frame,the zoning of each phase was produced separately.In the end,phases 1,2,7,8 were concluded as effective phases in Iran’s rainfall and phases 3,4,5,6 as suppressive phases of Iran’s rainfall.展开更多
High-frequency oscillations, with periods of about 2 hours, are first identified by applying wavelet analysis to observed minutely wind speeds around the eye and eyewall of tropical cyclones(TCs). Analysis of a mode...High-frequency oscillations, with periods of about 2 hours, are first identified by applying wavelet analysis to observed minutely wind speeds around the eye and eyewall of tropical cyclones(TCs). Analysis of a model simulation of Typhoon Hagupit(2008) shows that the oscillations also occur in the TC intensity, vertical motion, convergence activity and air density around the eyewall. Sequences of oscillations in these variables follow a certain order.展开更多
We investigate the Madden-Julian Oscillation (MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices ...We investigate the Madden-Julian Oscillation (MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices -- the all-season Real-Time multivariate MJO index (RMM) and outgoing longwave radiation-based MJO index (OMI) -- are used to compare the MJO- related ozone anomalies. The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies (mainly within 20-200 hPa) over the subtropics, The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4-7, when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean. Compared with the results based on RMM, the MJO-related stratospheric column ozone anomalies based on OM1 are stronger and one phase ahead. Further analysis suggests that different sampling errors, observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements. The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies, i.e., the uplifted tropopanse and the northward shifted westerly jet in the upper troposphere. Compared to the result based on RMM, the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI. Our study indicates that the circulation-based MJO index (RMM) can better characterize the MJO- related anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere, especially over subtropical East Asia.展开更多
The teleconnection impact of the boreal winter Antarctic Oscillation(AAO) on the Somali Jet(SMJ) intensity in the following spring and summer is examined in this paper.The variability of the boreal winter AAO is p...The teleconnection impact of the boreal winter Antarctic Oscillation(AAO) on the Somali Jet(SMJ) intensity in the following spring and summer is examined in this paper.The variability of the boreal winter AAO is positively related to the SMJ intensity in both spring and summer.The analyses show that the SST in southern high and middle latitudes seems to serve as a bridge linking these two systems.When the AAO is in strong positive phase,SST over the Southern Ocean cools in the high latitudes and warms in the middle latitudes,which persists into summer;however,the variability of SST in southern high and middle latitudes is also closely correlated to SMJ intensity.A possible mechanism that links SST variability with the AAO-SMJ relationship is also discussed.The AAO in boreal winter produces an SST anomaly pattern in southern high and middle latitudes through the air-sea coupling.This AAOrelated SST anomaly pattern modulates the local Ferrel cell anomaly in summer,followed by the regional Hadley cell anomaly in tropics.The anomalous vertical motion in tropics then changes the land-sea thermal contrast between the tropical Indian Ocean and the Asian continent through the variability of low cloud cover and downward surface longwave radiation flux.Finally,the land-sea thermal contrast anomaly between the tropical Indian Ocean and the Asian continent changes the SMJ intensity.The results from Community Atmosphere Model experiments forced by the SST anomaly in southern high and middle latitudes also confirm this diagnostic physical process to some extent.展开更多
This paper focuses on the impacts of convective momentum transport(CMT) on simulations of the tropical intraseasonal oscillation(TIO) in SAMIL. Two sets of experiments are performed, which give different reality of th...This paper focuses on the impacts of convective momentum transport(CMT) on simulations of the tropical intraseasonal oscillation(TIO) in SAMIL. Two sets of experiments are performed, which give different reality of the Madden-Julian Oscillation(MJO). The Tiedtke cumulus parameterization scheme is used for all experiments. It is found that simulations of the TIO can be influenced by CMT, and the impacts on the simulated TIO depend on the model capability in simulating the MJO. CMT tends to have large influences to the model that can simulate the eastward propagation of the MJO. CMT can further influence the long-term mean of zonal wind and its vertical shear. Zonal wind suffers from easterlies biases at low level and westerlies biases at upper level when CMT is introduced. Such easterlies biases at low level reduce the reality of the simulated tropical intraseasonal oscillation. When CMT is introduced in the model, MJO signals disappear but the model's mean state improves. Therefore, a more appropriate way is needed to introduce CMT to the model to balance the simulated mean state and TIO signals.展开更多
By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlatio...By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.展开更多
The influences of vegetation on intraseasonal oscillation (ISO) were examined using the Community Atmosphere Model version 3 (CAM3). Two 15-year numerical experiments were completed: the first was performed with ...The influences of vegetation on intraseasonal oscillation (ISO) were examined using the Community Atmosphere Model version 3 (CAM3). Two 15-year numerical experiments were completed: the first was performed with a realistic vegetation distribution (VEG run), and the second was identical to the VEG run except without land vegetation (NOVEG run). Generally speak- ing, CAM3 was able to reproduce the spatial distribution of the ISO, but the ISO intensity in the simulation was much weaker than that observed in nature: the 1SO has a relatively much stronger signal. A comparison of the VEG run with the NOVEG run revealed that the presence of vegetation usually produces a weak ISO. The vegetation effects on ISO intensity were significant over West Africa and South Asia, especially in the summer half-year. Vegetation also plays an important role in modulating ISO propagation. The eastward propagation of the ISO in the VEG run was clearer than that in the NOVEG run over the West African and Maritime Continent regions. The northward propagation of the ISO in the VEG run was more consistent with observation than that in the NOVEG run.展开更多
针对智能网联汽车(Connected and Automated Vehicle,CAV)的加入所引发的交通震荡问题,以不同CAV市场渗透率的异质交通流为研究对象,引入CAV车队规模和强度,对异质车队组成进行划分并仿真复现交通震荡现象,采用时空轨迹图和加减速波传...针对智能网联汽车(Connected and Automated Vehicle,CAV)的加入所引发的交通震荡问题,以不同CAV市场渗透率的异质交通流为研究对象,引入CAV车队规模和强度,对异质车队组成进行划分并仿真复现交通震荡现象,采用时空轨迹图和加减速波传播速度可视化交通震荡的演变情况,同时选用加速、减速持续时间衡量交通震荡周期,速度标准差衡量交通震荡振幅.通过设计考虑CAV车队规模、强度和渗透率因素以及头车不同变速模式的交互实验,探究CAV车队要素和头车不同变速模式对交通震荡的影响.研究结果表明:CAV车队规模、强度和渗透率的提高均对震荡周期的减小具有积极影响;车队规模的扩大会增加震荡振幅,而车队强度的增强会减小震荡振幅;随着CAV渗透率的提高,震荡振幅先上升再下降,当渗透率为0.5~0.6时,震荡振幅达到峰值;头车急减速-急加速模式下的交通震荡周期和振幅最小,头车缓慢减速-缓慢加速模式下的交通震荡周期和振幅最大.展开更多
The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physi...The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physical processes responsible for MJO eastward phase propagation are discussed. Next, a recent modeling result to address why MJO prefers a planetary zonal scale is presented. The effect of the seasonal mean state on distinctive propagation characteristics between northern winter and summer is discussed in a theoretical framework. Then, the observed precursor signals and the physical mechanism of MJO initiation in the western equatorial Indian Ocean are further discussed. Finally, scale interactions between MJO and higher- frequency eddies are delineated.展开更多
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2013AA031502 and 2014AA041902the National Natural Science Foundation of China under Grant Nos 11174085,51132004,and 51302086+3 种基金the Guangdong Natural Science Foundation under Grant Nos S2011030001349 and S20120011380the China National Funds for Distinguished Young Scientists under Grant No 61325024the Science and Technology Project of Guangdong Province under Grant No 2013B090500028the’Cross and Cooperative’Science and Technology Innovation Team Project of Chinese Academy of Sciences under Grant No 2012-119
文摘Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.
基金This research was jointly supported by the National Key R&D Program of China[grant number 2017YFA0603802]the National Natural Science Foundation of China[grant numbers 41730964 and 41991283]the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai).
文摘The 30-60-day intraseasonal oscillation(ISO) and 10-20-day ISO are two dominant oscillation modes over the western North Pacific during boreal summer.With daily data derived from eight CMIP5 models,changes of the ISO intensities are projected under the 1.5 and 2.0℃ global warming levels under the Representative Concentration Pathway(RCP) 4.5 and RCP8.5 scenarios.Most of the models agree that the ISO intensities increase along a belt region from the south Indochina Peninsula(ICP) to the east to the Philippines.The variation pattern shows little difference between different warming levels or scenarios.Results indicate that the spatial distribution of ISO anomalies is related with the variation of background fields.Enriched lower-level humidity and moist static energy favor the intensity increases of ISOs,which are projected to be larger over the whole western North Pacific,with the most conspicuous changes located over the east to the Philippines for humidity but over the south of the ICP for moist static energy.In contrast,the ISOs over the west to Indonesia and northeast to the Philippines decrease,which is consistent with the local descending motions.
文摘The intraseasonal timescale is attractive in Central Africa (CA) where socio-economic activities are highly based on rainfall. The parameterization of intraseasonal oscillations (ISO) then remains a great challenge for the improvement of sub-seasonal to seasonal (S2S) prediction in this region. In this paper, we applied wavelet analysis on the 2.5° × 2.5° daily Outgoing Longwave Radiation (OLR, used here as rainfall proxy) to study the variations in the intensity of the 30 - 60-day intraseasonal rainfall oscillations over Central Africa within the last three decades (1980-2009). Results showed that the mean ISO intensity (ISOI) strongly fluctuates from day to another. The plots of monthly mean ISOIs revealed that the ISO activity is highly seasonal with above-normal ISO intensity during December-May and below-normal activity during June-November. The analysis of yearly mean ISOI showed that the ISOI exhibits strong interannual variations with the years of very low ISOIs such as 1982, 1994, 2001, 2007, 2009, 2015 and the years of very high ISOIs such as 1981, 1985, 1986, 989/1990, 1997, 2003, 2005. The regression analysis between ISOI and El Niño Southern Oscillation (ENSO) indices showed that even though the relationship between ISO and ENSO is nonlinear, warm ENSO (El Niño) events tend to reduce the ISOIs while cold ENSO (La Niña) events tend to increase it.
基金Chinese Academy of Sciences under grant "Hundred Talents" for"Validation of Coupled Climate Models", the National Natural Scie
文摘The Madden-Julian Oscillation (MJO) is investigated in two sets of 11-year records of observed precipitation, the daily mean Microwave Sounding Units (MSU) oceanic rainfall (Spencer, 1993) data and the pentad Climate Prediction Center Merged Analysis of Precipitation (CMAP) data (Xie and Arkin, 1997). Obvious interannual variability is found in the MJO in the tropical Pacific. MJO is limited to the west of dateline in normal years while extends more east during the year of warm sea surface temperature (SST) appeared in the eastern Pacific (i.e., El Ni?o years of 1982–1983, 1986–1988, 1991–1992) and manifested in the central-eastern Pacific for several months. The most significant correlation between interannual variability of MJO in the central-eastern Pacific and SST was found in the vicinity of the Ni?o3 region. Forced by observed SST, CCM3 presents a realistic trend of interannual variability to MJO in the 11 years, with a smaller magnitude than that from the observation. Comparison between the two realizations of the CCM3 simulation, which are forced by weekly and monthly mean SST respectively, showed that the MJO activities resemble each other in central-eastern Pacific while there is discrepancy in the western Pacific. It is suggested that the interannual variability of MJO is controlled, to certain extent bythe powerful interannual variability of SST in the central-eastern Pacific. In the western Pacific, however, there were remarkable impacts of the intraseasonal oscillation of SST on the MJO, where there was active MJO around the year. The notable disagreement between simulated and observed MJO in the western Pacific may come from the lack of high frequency variation of SST force, or from the shortage of air sea interaction for the intraseasonal time scale. It might be of importance to the MJO which is unable to be represented in the atmospheric model. Key words Madden-Julian Oscillation - Precipitation - Sea surface temperature - Interannual variability This study was sponsored by Chinese Academy of Sciences under grant “Hundred Talents” for “Validation of Coupled Climate Models”, the National Natural Science Foundation of China (Grant No. 49823002), and Project G1999043808.
文摘In the past decade there has been extensive research into tropical intraseasonal variability, one of the major components of the low frequency variability of the general atmospheric circulation. This paper briefly reviews the state-of-the-art in this research area: the nature of the Madden-Julian Oscillation, its relation to monsoonal and extratropical circulations, and the current theoretical understandings.
基金funded by the National Natural Science Foundation of China (Grant No. 41105025)the Dragon 3 Programme (ID: 10577)
文摘The authors examined the Madden-Julian Oscillation(MJO) in stratospheric ozone during boreal winter using a simulation from the Specified Dynamics version of the Whole Atmosphere Community Climate Model(SD-WACCM) in 2004 and 2010. Comparison with European Centre for Medium-Range Weather Forecasts Interim Reanalysis(ERA-Interim) data suggested that the model simulation represented well the three-dimensional structure of the MJO-related ozone anomalies in the upper troposphere and stratosphere(i.e., between 200 and 20 h Pa). The negative ozone anomalies were over the Tibetan Plateau and East Asia in MJO phases 3–7, when the MJO convective anomalies travelled from the equatorial Indian Ocean towards the equatorial western Pacific Ocean. Due to the different vertical structures of the MJO-related circulation anomalies, the MJO-related stratospheric ozone anomalies showed different vertical structure over the Tibetan Plateau(25–40°N, 75–105°E) and East Asia(25–40°N, 105–135°E). As a result of the positive bias in the model-calculated ozone in the upper troposphere and lower stratosphere, the amplitude of MJO-related stratospheric ozone column anomalies(10–16 Dobson Units(DU)) in the SD-WACCM simulation was slightly larger than that(8–14 DU) in the ERA-Interim reanalysis.
基金supported by the National Natural Science Foundation of China[grant number 42088101]the National Postdoctoral Program for Innovative Talent of China[grant number BX2021133]the China Postdoctoral Science Foundation of No.70 General Fund[grant number 2021M701753]。
文摘This study investigates whether and how the Madden-Julian Oscillation(MJO)influences persistent extreme cold events(PECEs),a major type of natural disaster in boreal winter,over Northeast China.Significantly increased occurrence probabilities of PECEs over Northeast China are observed in phases 3 and 5 of the MJO,when MJOrelated convection is located over the eastern Indian Ocean and the western Pacific,respectively.Using the temperature tendency equation,it is found that the physical processes resulting in the cooling effects required for the occurrence of PECEs are distinct in the two phases of the MJO when MJO-related convection is consistently located over the warm pool area.The PECEs in phase 3 of the MJO mainly occur as a result of adiabatic cooling associated with ascending motion of the low-pressure anomaly over Northeast Asia.The cooling effect associated with phase 5 is stronger and longer than that in phase 3.The PECEs associated with phase 5 of the MJO are linked with the northwesterly cold advection of a cyclonic anomaly,which is part of the subtropical Rossby wave train induced by MJO-related convection in the tropical western Pacific.
基金supported by the National Natural Science Foundation of China(Grant Nos.61379153,61401519,and 61572529)the Natural Science Foundation of Hunan Province,China(Grant No.2017JJ3415)+1 种基金the Science and Technology Project of Guangxi Zhuang Autonomous Region,China(Grant Nos.AC16380094and 1598008-29)the Natural Science Fund of Guangxi Zhuang Autonomous Region,China(Grant No.2015GXNSFAA139298)
文摘A modified continuous-variable quantum key distribution (CVQKD) protocol is proposed by originating the entangled source from a malicious third party Eve in the middle instead of generating it from the trustworthy Alice or Bob. This method is able to enhance the efficiency of the CVQKD scheme attacked by local oscillator (LO) intensity attack in terms of the generated secret key rate in quantum communication. The other indication of the improvement is that the maximum transmission distance and the maximum loss tolerance can be increased significantly, especially for CVQKD schemes based on homodyne detection.
基金supported by the National Key Basic Research Developing Program(No.G1998040900,Part One)the Key Lab of Ocean Dynamic Processes and Satellite Oceanography(SOA).
文摘By using the long-term observed hydro-meteorological data (1985-2002) from the Tropical Atmosphere Ocean System (TAO) during the international Tropical Ocean and Global Atmosphere (TOGA) experiment, the key parameters of the Sea Surface Temperature (SST), thermocline depth, surface sensible heat flux and latent heat flux, and the pseudo wind stress in the Westen Equatorial Ocean are calculated in this paper. On the basis of the calculation, the response of upper layer heat structure in the Westen Pacific Warm Pool to the mean Madden-Julian Oscillation (MJO) and its relation to the El Nio events are analyzed. The results show that within the MJO frequency band (42-108 d), the distributions of sea surface wind stress and upper ocean temperature have several spatial-temporal variation structures. Among these structures, the type-I surface pseudo wind stress field plays the role of inhibiting the eastward transport of ocean heat capacity, while the type-II strengthens the heat capacity spreading eastward. Therefore the type-II surface pseudo wind stress field is the characteristic wind field that provokes El Nio events. During calm periods (July-September) of the wind stress variations, the sensible and latent heat capacity fluxes change considerably, mostly in the region between 137°-140°E, while to the east of 150°E, the heat capacity flux changes less.\ In the mean MJO state, the type-I surface pseudo wind stress field structure dominates in the Western Pacific. This is why El Nio events can not occur every year. However, when the type-II and type-III surface pseudo wind stress field structures are dominant, an El Nio event is likely to occur. In this case, if the heat capacity of the Western Pacific Warm Pool is transported eastward and combined with the Equatorial Pacific heat capacity spreading eastward, El Nio events will soon occur.
文摘The Madden-Julian Oscillation is one of the large-scale climate change patterns in the maritime tropics,with sub-seasonal time periods of 30 to 60 days affecting tropical and subtropical regions.This phenomenon can cause changes in various quantities of the atmosphere and ocean,such as pressure,sea surface temperature,and the rate of evaporation from the ocean surface in tropical regions.In this research,the effects of Madden-Julian fluctuation on the weather elements of Iran have been investigated with the aim of knowing the effects of different phases in order to improve the quality of forecasts and benefits in territorial planning.At first,the daily rainfall data of 1980-2020 were received from the National Meteorological Organization and quality controlled.Using the Wheeler and Hendon method,the two main components RMM1 and RMM2 were analyzed,based on which the amplitude of the above two components is considered as the main indicator of the intensity and weakness of this fluctuation.This index is based on the experimental orthogonal functions of the meteorological fields,including the average wind levels of 850 and 200 hectopascals and outgoing long wave radiation(OLR)between the latitudes of 20 degrees south and 20 degrees north.The clustering of the 7-day sequence with a component above 1 was used as the basis for clustering all eight phases,and by calculating the abnormality of each phase compared to its long term in the DJF time frame,the zoning of each phase was produced separately.In the end,phases 1,2,7,8 were concluded as effective phases in Iran’s rainfall and phases 3,4,5,6 as suppressive phases of Iran’s rainfall.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41375050, 41405048 and 41205032)the China National Basic Research Program (Grant Nos. 2011CB403500 and 2014CB953904)
文摘High-frequency oscillations, with periods of about 2 hours, are first identified by applying wavelet analysis to observed minutely wind speeds around the eye and eyewall of tropical cyclones(TCs). Analysis of a model simulation of Typhoon Hagupit(2008) shows that the oscillations also occur in the TC intensity, vertical motion, convergence activity and air density around the eyewall. Sequences of oscillations in these variables follow a certain order.
基金funded by the National Natural Science Foundation of China(Grant No.41105025)the Dragon 3 Programme(ID:10577)the High Resolution Earth Observation Funds for Young Scientists(Grant No.GFZX04060103)
文摘We investigate the Madden-Julian Oscillation (MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices -- the all-season Real-Time multivariate MJO index (RMM) and outgoing longwave radiation-based MJO index (OMI) -- are used to compare the MJO- related ozone anomalies. The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies (mainly within 20-200 hPa) over the subtropics, The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4-7, when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean. Compared with the results based on RMM, the MJO-related stratospheric column ozone anomalies based on OM1 are stronger and one phase ahead. Further analysis suggests that different sampling errors, observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements. The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies, i.e., the uplifted tropopanse and the northward shifted westerly jet in the upper troposphere. Compared to the result based on RMM, the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI. Our study indicates that the circulation-based MJO index (RMM) can better characterize the MJO- related anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere, especially over subtropical East Asia.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 41175051 and 41490642)the National Basic Research and Development (973) Program of China (Grant No. 2012CB957804)+1 种基金the Postgraduate Science and Technology Innovation Project of Jiangsu Province (Grant No. CXZZ13 0517)the financial support of the China Scholarship Council (CSC)
文摘The teleconnection impact of the boreal winter Antarctic Oscillation(AAO) on the Somali Jet(SMJ) intensity in the following spring and summer is examined in this paper.The variability of the boreal winter AAO is positively related to the SMJ intensity in both spring and summer.The analyses show that the SST in southern high and middle latitudes seems to serve as a bridge linking these two systems.When the AAO is in strong positive phase,SST over the Southern Ocean cools in the high latitudes and warms in the middle latitudes,which persists into summer;however,the variability of SST in southern high and middle latitudes is also closely correlated to SMJ intensity.A possible mechanism that links SST variability with the AAO-SMJ relationship is also discussed.The AAO in boreal winter produces an SST anomaly pattern in southern high and middle latitudes through the air-sea coupling.This AAOrelated SST anomaly pattern modulates the local Ferrel cell anomaly in summer,followed by the regional Hadley cell anomaly in tropics.The anomalous vertical motion in tropics then changes the land-sea thermal contrast between the tropical Indian Ocean and the Asian continent through the variability of low cloud cover and downward surface longwave radiation flux.Finally,the land-sea thermal contrast anomaly between the tropical Indian Ocean and the Asian continent changes the SMJ intensity.The results from Community Atmosphere Model experiments forced by the SST anomaly in southern high and middle latitudes also confirm this diagnostic physical process to some extent.
基金sponsored by the Joint Project of Natural Science Foundation of China and Yunnan Province (U0833602)
文摘This paper focuses on the impacts of convective momentum transport(CMT) on simulations of the tropical intraseasonal oscillation(TIO) in SAMIL. Two sets of experiments are performed, which give different reality of the Madden-Julian Oscillation(MJO). The Tiedtke cumulus parameterization scheme is used for all experiments. It is found that simulations of the TIO can be influenced by CMT, and the impacts on the simulated TIO depend on the model capability in simulating the MJO. CMT tends to have large influences to the model that can simulate the eastward propagation of the MJO. CMT can further influence the long-term mean of zonal wind and its vertical shear. Zonal wind suffers from easterlies biases at low level and westerlies biases at upper level when CMT is introduced. Such easterlies biases at low level reduce the reality of the simulated tropical intraseasonal oscillation. When CMT is introduced in the model, MJO signals disappear but the model's mean state improves. Therefore, a more appropriate way is needed to introduce CMT to the model to balance the simulated mean state and TIO signals.
文摘By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.
基金supported by the National Natural Science Foundation of China (General Program (Grant No.40905042)and Key Program (Grant No. 40830956))
文摘The influences of vegetation on intraseasonal oscillation (ISO) were examined using the Community Atmosphere Model version 3 (CAM3). Two 15-year numerical experiments were completed: the first was performed with a realistic vegetation distribution (VEG run), and the second was identical to the VEG run except without land vegetation (NOVEG run). Generally speak- ing, CAM3 was able to reproduce the spatial distribution of the ISO, but the ISO intensity in the simulation was much weaker than that observed in nature: the 1SO has a relatively much stronger signal. A comparison of the VEG run with the NOVEG run revealed that the presence of vegetation usually produces a weak ISO. The vegetation effects on ISO intensity were significant over West Africa and South Asia, especially in the summer half-year. Vegetation also plays an important role in modulating ISO propagation. The eastward propagation of the ISO in the VEG run was clearer than that in the NOVEG run over the West African and Maritime Continent regions. The northward propagation of the ISO in the VEG run was more consistent with observation than that in the NOVEG run.
文摘针对智能网联汽车(Connected and Automated Vehicle,CAV)的加入所引发的交通震荡问题,以不同CAV市场渗透率的异质交通流为研究对象,引入CAV车队规模和强度,对异质车队组成进行划分并仿真复现交通震荡现象,采用时空轨迹图和加减速波传播速度可视化交通震荡的演变情况,同时选用加速、减速持续时间衡量交通震荡周期,速度标准差衡量交通震荡振幅.通过设计考虑CAV车队规模、强度和渗透率因素以及头车不同变速模式的交互实验,探究CAV车队要素和头车不同变速模式对交通震荡的影响.研究结果表明:CAV车队规模、强度和渗透率的提高均对震荡周期的减小具有积极影响;车队规模的扩大会增加震荡振幅,而车队强度的增强会减小震荡振幅;随着CAV渗透率的提高,震荡振幅先上升再下降,当渗透率为0.5~0.6时,震荡振幅达到峰值;头车急减速-急加速模式下的交通震荡周期和振幅最小,头车缓慢减速-缓慢加速模式下的交通震荡周期和振幅最大.
基金Supported by the United States National Science Foundation(AGS-1106536)Office of Naval Research(N00014-1210450)+1 种基金China National Natural Science Foundation(41375095)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306032)
文摘The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physical processes responsible for MJO eastward phase propagation are discussed. Next, a recent modeling result to address why MJO prefers a planetary zonal scale is presented. The effect of the seasonal mean state on distinctive propagation characteristics between northern winter and summer is discussed in a theoretical framework. Then, the observed precursor signals and the physical mechanism of MJO initiation in the western equatorial Indian Ocean are further discussed. Finally, scale interactions between MJO and higher- frequency eddies are delineated.