背景与目的:肿瘤的发生、发展过程中会发生代谢重编程,1-酰基甘油-3-磷酸O-酰基转移酶(1-acylglycerol-3-phosphate O-acyltransferase,AGPAT)作为三酰甘油(triacylglycerol,TAG)从头合成的关键酶,与肿瘤的进展密切相关。但目前作为亚...背景与目的:肿瘤的发生、发展过程中会发生代谢重编程,1-酰基甘油-3-磷酸O-酰基转移酶(1-acylglycerol-3-phosphate O-acyltransferase,AGPAT)作为三酰甘油(triacylglycerol,TAG)从头合成的关键酶,与肿瘤的进展密切相关。但目前作为亚型之一的AGPAT5在癌症中的研究还十分有限,本研究深入剖析AGPAT5在肝癌发生、发展中发挥的作用及潜在的分子机制,旨在为肝癌诊断和治疗策略提供新思路。方法:利用慢病毒感染将多种肝癌细胞系中的AGPAT5敲减,并通过锥虫蓝计数、划痕、transwell及平板克隆等实验在体外检测AGPAT5对肝癌细胞增殖、迁移及抗失巢凋亡能力的影响。通过回复野生型或酶活性缺失型的AGPAT5,探究其作为代谢酶是否发挥经典代谢作用调控肝癌细胞迁移。构建BALB/c裸鼠尾静脉注射移植瘤模型,从体内层面验证体外的细胞表型。采用免疫沉淀质谱联用(immunoprecipitation mass spectrum,IP-MS)鉴定出与AGPAT5相互作用的蛋白,并进行免疫共沉淀(co-immunoprecipitation,coIP)验证。蛋白质翻译后通过修饰鉴定分析AGPAT5潜在的修饰位点,通过体外实验探究点突变前后对肝癌细胞迁移的影响。通过coIP探究该位点突变前后AGPAT5与相互作用蛋白结合的情况。通过敲低相互作用蛋白确定其在细胞表型中的作用。通过回复实验验证AGPAT5是否通过相互作用蛋白发挥作用。检测野生型肝癌细胞系中的AGPAT5和相互作用蛋白的表达水平,检验两者之间是否具有相关性。结果:肝癌细胞敲减AGPAT5后会更加耐受无血清饥饿,并促进细胞迁移,但不会影响细胞增殖和失巢凋亡。而酶活性缺失并不影响AGPAT5对肝癌细胞迁移的抑制。敲减AGPAT5可促进肝癌细胞在裸鼠体内的肺转移和肝转移。AGPAT5可以与原纤维蛋白(fibrillarin,FBL)相互作用,并在无血清饥饿刺激下加强两者的结合。遏制FBL的表达会抑制肝癌细胞迁移,且效果与过表达AGPAT5相似。抑制FBL的表达可削弱敲低AGPAT5对肝癌细胞迁移的促进作用。在已检测的肝癌细胞系中,AGPAT5和FBL在蛋白水平上并不存在相关性。K201位点突变使AGPAT5对肝癌细胞迁移的抑制作用减弱,并使AGPAT5与FBL的结合减弱。结论:敲低AGPAT5能够显著提高肝癌细胞迁移能力。AGPAT5可以与FBL相互作用,在无血清饥饿刺激下,AGPAT5或通过K201位点的乙酰化加强与FBL的结合,从而更有效地遏制FBL,进而抑制肝癌细胞迁移。但这种抑制作用并非来自AGPAT5的代谢酶活性,而是由非代谢作用所驱动。展开更多
目的:探讨Site^Rite*5超声波系统在引导行经外周静脉置入中心静脉导管(peripherally inserted central catheters,PICC)中的应用情况、优点和使用过程中的注意事项。方法 :将62例肾病患者分为对照组(34例)和试验组(28例),分别进行直视...目的:探讨Site^Rite*5超声波系统在引导行经外周静脉置入中心静脉导管(peripherally inserted central catheters,PICC)中的应用情况、优点和使用过程中的注意事项。方法 :将62例肾病患者分为对照组(34例)和试验组(28例),分别进行直视下普通置管和超声波系统引导下PICC置管,由固定的人员操作,统一评估标准,对比2组穿刺成功率、并发症发生率和护患满意度。结果:应用Site^Rite*5超声波系统引导PICC置管可以提高穿刺成功率,减少并发症发生,并明显提高护患满意度。结论:使用Site^Rite*5超声波系统引导PICC置管提高了护理人员PICC置管的成功率,有效降低了穿刺失败风险,值得推广应用。展开更多
The catalytic activity of Cu-ZSM-5 in trichloroethylene (TCE) combustion increases with the increasing skeletal Cu amount and however decreases with the increase of surface amorphous CuO, which is detected by infrar...The catalytic activity of Cu-ZSM-5 in trichloroethylene (TCE) combustion increases with the increasing skeletal Cu amount and however decreases with the increase of surface amorphous CuO, which is detected by infrared spectroscopy (IR) and diffuse reflectance ultraviolet-visible spectroscopy (DRS-UV-vis), therefore the skeletal Cu species are concluded to be the active sites for the TCE combustion.展开更多
Recent improvement in the technologies for efficient delivery of DNA vaccines has renewed interest in the DNA-based vaccines. Several DNA-based vaccines against human enterovirus 71 (EV71), the causative agent for han...Recent improvement in the technologies for efficient delivery of DNA vaccines has renewed interest in the DNA-based vaccines. Several DNA-based vaccines against human enterovirus 71 (EV71), the causative agent for hand, foot and mouth disease (HFMD) have been developed. Here we examined the potential of improving the vaccines by inserting the EV71 5’ untranslated region (5’ UTR) containing the full length internal ribosome entry site (IRES) sequence to the EV71 VP1-based DNA vaccine constructs. Four vaccine constructs designated as 5’ UTR-VP1/EGFP, VP1/EGFP, 5’ UTR-VP1/pVAX and VP1/pVAX, were designed using the pEGFP-N1 and pVAX-1 expression vectors, respectively. Transfection of Vero cells with the vaccine constructs with the 5’-UTR (5’-UTR-VP1/EGFP and 5’ UTR-VP1/pVAX) resulted in higher percentages of cells expressing the recombinant protein in comparison to cells transfected with vectors without the 5’-UTR (67% and 57%, respectively). Higher IgG responses (29%) were obtained from mice immunized with the DNA vaccine construct with the full length 5’ UTR. The same group of mice when challenged with life EV71 produced significantly higher neutralizing antibody (NAb) titers (>5-fold). These results suggest that insertion of the EV71 5’ UTR sequence consisting of the full length IRES to the EV71 DNA vaccine constructs improved the efficacy of the constructs with enhanced elicitation of the neutralizing antibody responses.展开更多
H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framewor...H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework,the catalytic roles of the acid sites in different pore channels of the H‐ZSM‐5 zeolite are not well understood.In this study,the MTO reaction network,involving the aromatic cycle,alkene cycle,and aromatization process,and also the diffusion behavior of methanol feedstock and olefin and aromatic products at different acid sites in the straight channel,sinusoidal channel,and intersection cavity of H‐ZSM‐5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations.The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels.In contrast,the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels,whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities.Consequently,the catalytic performance of H‐ZSM‐5 zeolite for MTO conversion,including activity and product selectivity,can be regulated properly through the purposive alteration of the acid site distribution,viz.,the location of Al in the zeolite framework.This study helps to elucidate the relation between the catalytic performance of different acid sites in the H‐ZSM‐5 zeolite framework for MTO conversion,which should greatly benefit the design of efficient catalyst for methanol conversion.展开更多
To study the effect of adjacent hydroxyl to the active sites, several acid catalysts, i.e. substituted benzoic acids with adjacent carboxyl are employed in the fructose dehydration to 5-hydroxymethylfurfural(HMF).Expe...To study the effect of adjacent hydroxyl to the active sites, several acid catalysts, i.e. substituted benzoic acids with adjacent carboxyl are employed in the fructose dehydration to 5-hydroxymethylfurfural(HMF).Experimental results reveal that Br?nsted acid sites with adjacent carboxyl present higher catalytic ability than isolated ones. Computational results suggest that the adjacent sites lead to co-interaction on fructose, corresponding more stable transition state and faster HMF formation rate. Based on the enhancement from the adjacent sites, a novel ordered mesoporous carbon(OMC) full of carboxyls in surface is prepared and turns out to be an effective solid catalyst for HMF production from fructose derived from biomass.展开更多
Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inacti...Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-y in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henardl2/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N 1 influenza viruses.展开更多
<span style="font-family:Verdana;">In this study, two Cu</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-fami...<span style="font-family:Verdana;">In this study, two Cu</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">based catalysts with and without N doped carbon matrix, named N-Cu/CuO/C and Cu/CuO were synthesized via calcination of melamine-cupper acetate complex and cupper acetate at 500<span style="white-space:nowrap;">°</span>C under an inert atmosphere. The catalysts were characterized by X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and </span><span><span style="font-family:Verdana;">CHNS </span><span><span style="font-family:Verdana;">elemental analyzer</span><i><span style="font-family:Verdana;">.</span></i></span></span><span style="font-family:Verdana;"> The catalytic activity of both catalysts was evaluated</span><span style="font-family:Verdana;"> through the NaBH</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> associated reduction of commercial textile dye named reactive black 5 (RB5). The kinetics of the reduction of reactive black 5 was also described by the pseudo-first-order kinetic equation. For the studied reduction, N-Cu/CuO/C exhibited enhanced catalytic activity both in conversion and kinetics (97% conv. in 315 sec) compared to that of by Cu/CuO/C (25% conv. in 1500 sec). Besides, N-Cu/CuO/C also demonstrated good reusability up to four consecutive cycles.</span></span></span></span>展开更多
By using a whitelight lamp, an Ar+ ion laser whosewavelength was tuned to 457. 9 nmand a tunable Rh 6G dye laser(linewidth: 0. 5 cm-1) pumped bythe second harmonic of a Nd: YAGlaser as light sources and using amonochr...By using a whitelight lamp, an Ar+ ion laser whosewavelength was tuned to 457. 9 nmand a tunable Rh 6G dye laser(linewidth: 0. 5 cm-1) pumped bythe second harmonic of a Nd: YAGlaser as light sources and using amonochromator, a phase-lockingamplifier and a computer as the data detecting system, the transmission spectrum, fluorescence spectra, excitation spectrum and siteselective fluorescence spectra ofthe Eu3+: Y2SiO5 crystal were observed. More than thirty out of thetotal fifty spectral lines were observed for 5D0→7F0,1,2,3,4 transitions. The Eu3+ ions occupy twokinds of the Y3+ sites with the lowsymmetry in this crystal. The difference of the wavelengths of thetwo Eu3+ sites for 7F0→5D0 transition is about 0. 2 nm. It was foundthat the two sites were nonequivalent optical ones at room temperature. Crystal lattice constants a,b, c, and β of Eu3+: Y2SiO5 werealso measured by the X-ray diffraction method. The results show thatthe lattice constants a, b, and cof the crystal doped Eu3+ ions isvery close to those of the Y2SiO5crystal undoped Eu3+ ions.展开更多
锌-空气电池(ZAB)因其能量密度高、环境友好、成本低以及安全性高而备受关注.然而,空气电极上的氧还原反应(ORR)动力学缓慢,严重限制了ZAB的输出功率.尽管铂基催化剂展现出优异的ORR催化活性,但高昂的成本制约其大规模商业化应用.因此,...锌-空气电池(ZAB)因其能量密度高、环境友好、成本低以及安全性高而备受关注.然而,空气电极上的氧还原反应(ORR)动力学缓慢,严重限制了ZAB的输出功率.尽管铂基催化剂展现出优异的ORR催化活性,但高昂的成本制约其大规模商业化应用.因此,迫切需要开发高效、低成本的ORR电催化剂.研究表明,具有原子分散Co-N4活性位点的Co-N-C单原子催化剂是理想的ORR非贵金属催化剂,但其仍然存在与反应关键中间体结合能较高的难题.目前的研究主要通过调控单原子配位环境与增大活性位点密度来提高Co-N-C催化剂的活性,但如何精确控制中心金属电子结构以及避免高温下金属原子的团聚仍面临巨大挑战.除了单原子活性位点外,催化剂载体的键合结构、电荷分布状态亦会影响载体本身和单原子位点的催化活性.然而,现有的研究主要聚焦于单原子位点或无金属催化剂单方面活性的提升,关于它们之间的相互作用对于催化性能影响的研究相对很少.为了进一步提高Co单原子催化剂的催化活性,本文通过简单的模板法与NH3二次处理策略制备了氮掺杂缺陷碳负载的Co-N_(5)位点单原子催化剂.电感耦合等离子体发射光谱结果表明,单原子Co的金属负载量高达2.57 wt%.此外,相比于未经过NH3二次处理的Co-Nx/HC样品,Co-N_(5)/DHC样品在电子顺磁共振谱中g=2.003处呈现出更明显的共振信号,在C 1s高分辨谱中具有更低的C-C(sp2杂化)/C-N(sp3杂化)比例以及明显增加的吡啶氮信号,证实了Co-N_(5)/DHC显著提升的氮掺杂碳缺陷浓度并具有丰富的边界/缺陷位点.同时,X射线吸收谱与球差矫正透射电子显微镜结果表明所制备的样品为原子分散的Co-N_(5)结构,从而证明成功制备了缺陷氮掺杂碳耦合Co-N_(5)位点单原子催化剂.电化学测试结果表明,缺陷氮掺杂碳耦合Co-N_(5)位点后表现较好的ORR性能,半波电位达到0.877 V,明显高于Co-Nx/HC对比样品和商业化Pt/C催化剂.Koutecky-Levich曲线和旋转盘环电极测试结果表明,Co-N_(5)/DHC催化剂的高效4e-反应路径.且在10000次的加速老化测试中,Co-N_(5)/DHC半波电位仅降低了7 m V,稳定性优于Pt/C.以Co-N_(5)/DHC为阴极催化剂组装的ZAB开路电压为1.45 V,峰值输出功率密度能够达到160.7 m W cm^(-2),并能提供766.2 m A h gZn-1的比容量,展现出较高的应用前景.密度泛函理论计算表明,Co-N_(5)位点与缺陷氮掺杂碳的相互作用诱导Co中心位点电子的重新分布,降低了ORR反应能垒.综上,本文为设计与合成高性能的Co单原子催化剂,用于先进的可再生能源转换系统提供了一种新思路.展开更多
文摘背景与目的:肿瘤的发生、发展过程中会发生代谢重编程,1-酰基甘油-3-磷酸O-酰基转移酶(1-acylglycerol-3-phosphate O-acyltransferase,AGPAT)作为三酰甘油(triacylglycerol,TAG)从头合成的关键酶,与肿瘤的进展密切相关。但目前作为亚型之一的AGPAT5在癌症中的研究还十分有限,本研究深入剖析AGPAT5在肝癌发生、发展中发挥的作用及潜在的分子机制,旨在为肝癌诊断和治疗策略提供新思路。方法:利用慢病毒感染将多种肝癌细胞系中的AGPAT5敲减,并通过锥虫蓝计数、划痕、transwell及平板克隆等实验在体外检测AGPAT5对肝癌细胞增殖、迁移及抗失巢凋亡能力的影响。通过回复野生型或酶活性缺失型的AGPAT5,探究其作为代谢酶是否发挥经典代谢作用调控肝癌细胞迁移。构建BALB/c裸鼠尾静脉注射移植瘤模型,从体内层面验证体外的细胞表型。采用免疫沉淀质谱联用(immunoprecipitation mass spectrum,IP-MS)鉴定出与AGPAT5相互作用的蛋白,并进行免疫共沉淀(co-immunoprecipitation,coIP)验证。蛋白质翻译后通过修饰鉴定分析AGPAT5潜在的修饰位点,通过体外实验探究点突变前后对肝癌细胞迁移的影响。通过coIP探究该位点突变前后AGPAT5与相互作用蛋白结合的情况。通过敲低相互作用蛋白确定其在细胞表型中的作用。通过回复实验验证AGPAT5是否通过相互作用蛋白发挥作用。检测野生型肝癌细胞系中的AGPAT5和相互作用蛋白的表达水平,检验两者之间是否具有相关性。结果:肝癌细胞敲减AGPAT5后会更加耐受无血清饥饿,并促进细胞迁移,但不会影响细胞增殖和失巢凋亡。而酶活性缺失并不影响AGPAT5对肝癌细胞迁移的抑制。敲减AGPAT5可促进肝癌细胞在裸鼠体内的肺转移和肝转移。AGPAT5可以与原纤维蛋白(fibrillarin,FBL)相互作用,并在无血清饥饿刺激下加强两者的结合。遏制FBL的表达会抑制肝癌细胞迁移,且效果与过表达AGPAT5相似。抑制FBL的表达可削弱敲低AGPAT5对肝癌细胞迁移的促进作用。在已检测的肝癌细胞系中,AGPAT5和FBL在蛋白水平上并不存在相关性。K201位点突变使AGPAT5对肝癌细胞迁移的抑制作用减弱,并使AGPAT5与FBL的结合减弱。结论:敲低AGPAT5能够显著提高肝癌细胞迁移能力。AGPAT5可以与FBL相互作用,在无血清饥饿刺激下,AGPAT5或通过K201位点的乙酰化加强与FBL的结合,从而更有效地遏制FBL,进而抑制肝癌细胞迁移。但这种抑制作用并非来自AGPAT5的代谢酶活性,而是由非代谢作用所驱动。
文摘目的:探讨Site^Rite*5超声波系统在引导行经外周静脉置入中心静脉导管(peripherally inserted central catheters,PICC)中的应用情况、优点和使用过程中的注意事项。方法 :将62例肾病患者分为对照组(34例)和试验组(28例),分别进行直视下普通置管和超声波系统引导下PICC置管,由固定的人员操作,统一评估标准,对比2组穿刺成功率、并发症发生率和护患满意度。结果:应用Site^Rite*5超声波系统引导PICC置管可以提高穿刺成功率,减少并发症发生,并明显提高护患满意度。结论:使用Site^Rite*5超声波系统引导PICC置管提高了护理人员PICC置管的成功率,有效降低了穿刺失败风险,值得推广应用。
基金financially supported by the developing & scientific foundation of Chengdu University of Information Technology (No.KYTZ20060902)Sichuan Provincial Department of Education (No.2006C032).
文摘The catalytic activity of Cu-ZSM-5 in trichloroethylene (TCE) combustion increases with the increasing skeletal Cu amount and however decreases with the increase of surface amorphous CuO, which is detected by infrared spectroscopy (IR) and diffuse reflectance ultraviolet-visible spectroscopy (DRS-UV-vis), therefore the skeletal Cu species are concluded to be the active sites for the TCE combustion.
文摘Recent improvement in the technologies for efficient delivery of DNA vaccines has renewed interest in the DNA-based vaccines. Several DNA-based vaccines against human enterovirus 71 (EV71), the causative agent for hand, foot and mouth disease (HFMD) have been developed. Here we examined the potential of improving the vaccines by inserting the EV71 5’ untranslated region (5’ UTR) containing the full length internal ribosome entry site (IRES) sequence to the EV71 VP1-based DNA vaccine constructs. Four vaccine constructs designated as 5’ UTR-VP1/EGFP, VP1/EGFP, 5’ UTR-VP1/pVAX and VP1/pVAX, were designed using the pEGFP-N1 and pVAX-1 expression vectors, respectively. Transfection of Vero cells with the vaccine constructs with the 5’-UTR (5’-UTR-VP1/EGFP and 5’ UTR-VP1/pVAX) resulted in higher percentages of cells expressing the recombinant protein in comparison to cells transfected with vectors without the 5’-UTR (67% and 57%, respectively). Higher IgG responses (29%) were obtained from mice immunized with the DNA vaccine construct with the full length 5’ UTR. The same group of mice when challenged with life EV71 produced significantly higher neutralizing antibody (NAb) titers (>5-fold). These results suggest that insertion of the EV71 5’ UTR sequence consisting of the full length IRES to the EV71 DNA vaccine constructs improved the efficacy of the constructs with enhanced elicitation of the neutralizing antibody responses.
文摘H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework,the catalytic roles of the acid sites in different pore channels of the H‐ZSM‐5 zeolite are not well understood.In this study,the MTO reaction network,involving the aromatic cycle,alkene cycle,and aromatization process,and also the diffusion behavior of methanol feedstock and olefin and aromatic products at different acid sites in the straight channel,sinusoidal channel,and intersection cavity of H‐ZSM‐5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations.The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels.In contrast,the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels,whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities.Consequently,the catalytic performance of H‐ZSM‐5 zeolite for MTO conversion,including activity and product selectivity,can be regulated properly through the purposive alteration of the acid site distribution,viz.,the location of Al in the zeolite framework.This study helps to elucidate the relation between the catalytic performance of different acid sites in the H‐ZSM‐5 zeolite framework for MTO conversion,which should greatly benefit the design of efficient catalyst for methanol conversion.
基金supported by the Natural Science Foundation of Jiangsu Province (BK20151380)NSF of China (21103087 and 21872067)supported by the Fundamental Research Funds for the Central Universities (020514380116)。
文摘To study the effect of adjacent hydroxyl to the active sites, several acid catalysts, i.e. substituted benzoic acids with adjacent carboxyl are employed in the fructose dehydration to 5-hydroxymethylfurfural(HMF).Experimental results reveal that Br?nsted acid sites with adjacent carboxyl present higher catalytic ability than isolated ones. Computational results suggest that the adjacent sites lead to co-interaction on fructose, corresponding more stable transition state and faster HMF formation rate. Based on the enhancement from the adjacent sites, a novel ordered mesoporous carbon(OMC) full of carboxyls in surface is prepared and turns out to be an effective solid catalyst for HMF production from fructose derived from biomass.
基金supported by the National Basic Research Program of China (973: 2012CB518904) from the Ministry of Science and Technology of Chinathe National Natural Science Foundation of China(81201298)
文摘Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-y in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henardl2/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N 1 influenza viruses.
基金supported by the Project of Shandong Province Higher Educational Young Inno-vative Talent Introduction and Cultivation Team(Hy-drogen energy chemistry innovation team)the Nation-al Natural Science Foundation of China(No.22105119)the Natural Science Foundation of Shandong Province(ZR2021QB016).
文摘<span style="font-family:Verdana;">In this study, two Cu</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">based catalysts with and without N doped carbon matrix, named N-Cu/CuO/C and Cu/CuO were synthesized via calcination of melamine-cupper acetate complex and cupper acetate at 500<span style="white-space:nowrap;">°</span>C under an inert atmosphere. The catalysts were characterized by X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and </span><span><span style="font-family:Verdana;">CHNS </span><span><span style="font-family:Verdana;">elemental analyzer</span><i><span style="font-family:Verdana;">.</span></i></span></span><span style="font-family:Verdana;"> The catalytic activity of both catalysts was evaluated</span><span style="font-family:Verdana;"> through the NaBH</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> associated reduction of commercial textile dye named reactive black 5 (RB5). The kinetics of the reduction of reactive black 5 was also described by the pseudo-first-order kinetic equation. For the studied reduction, N-Cu/CuO/C exhibited enhanced catalytic activity both in conversion and kinetics (97% conv. in 315 sec) compared to that of by Cu/CuO/C (25% conv. in 1500 sec). Besides, N-Cu/CuO/C also demonstrated good reusability up to four consecutive cycles.</span></span></span></span>
文摘By using a whitelight lamp, an Ar+ ion laser whosewavelength was tuned to 457. 9 nmand a tunable Rh 6G dye laser(linewidth: 0. 5 cm-1) pumped bythe second harmonic of a Nd: YAGlaser as light sources and using amonochromator, a phase-lockingamplifier and a computer as the data detecting system, the transmission spectrum, fluorescence spectra, excitation spectrum and siteselective fluorescence spectra ofthe Eu3+: Y2SiO5 crystal were observed. More than thirty out of thetotal fifty spectral lines were observed for 5D0→7F0,1,2,3,4 transitions. The Eu3+ ions occupy twokinds of the Y3+ sites with the lowsymmetry in this crystal. The difference of the wavelengths of thetwo Eu3+ sites for 7F0→5D0 transition is about 0. 2 nm. It was foundthat the two sites were nonequivalent optical ones at room temperature. Crystal lattice constants a,b, c, and β of Eu3+: Y2SiO5 werealso measured by the X-ray diffraction method. The results show thatthe lattice constants a, b, and cof the crystal doped Eu3+ ions isvery close to those of the Y2SiO5crystal undoped Eu3+ ions.
文摘锌-空气电池(ZAB)因其能量密度高、环境友好、成本低以及安全性高而备受关注.然而,空气电极上的氧还原反应(ORR)动力学缓慢,严重限制了ZAB的输出功率.尽管铂基催化剂展现出优异的ORR催化活性,但高昂的成本制约其大规模商业化应用.因此,迫切需要开发高效、低成本的ORR电催化剂.研究表明,具有原子分散Co-N4活性位点的Co-N-C单原子催化剂是理想的ORR非贵金属催化剂,但其仍然存在与反应关键中间体结合能较高的难题.目前的研究主要通过调控单原子配位环境与增大活性位点密度来提高Co-N-C催化剂的活性,但如何精确控制中心金属电子结构以及避免高温下金属原子的团聚仍面临巨大挑战.除了单原子活性位点外,催化剂载体的键合结构、电荷分布状态亦会影响载体本身和单原子位点的催化活性.然而,现有的研究主要聚焦于单原子位点或无金属催化剂单方面活性的提升,关于它们之间的相互作用对于催化性能影响的研究相对很少.为了进一步提高Co单原子催化剂的催化活性,本文通过简单的模板法与NH3二次处理策略制备了氮掺杂缺陷碳负载的Co-N_(5)位点单原子催化剂.电感耦合等离子体发射光谱结果表明,单原子Co的金属负载量高达2.57 wt%.此外,相比于未经过NH3二次处理的Co-Nx/HC样品,Co-N_(5)/DHC样品在电子顺磁共振谱中g=2.003处呈现出更明显的共振信号,在C 1s高分辨谱中具有更低的C-C(sp2杂化)/C-N(sp3杂化)比例以及明显增加的吡啶氮信号,证实了Co-N_(5)/DHC显著提升的氮掺杂碳缺陷浓度并具有丰富的边界/缺陷位点.同时,X射线吸收谱与球差矫正透射电子显微镜结果表明所制备的样品为原子分散的Co-N_(5)结构,从而证明成功制备了缺陷氮掺杂碳耦合Co-N_(5)位点单原子催化剂.电化学测试结果表明,缺陷氮掺杂碳耦合Co-N_(5)位点后表现较好的ORR性能,半波电位达到0.877 V,明显高于Co-Nx/HC对比样品和商业化Pt/C催化剂.Koutecky-Levich曲线和旋转盘环电极测试结果表明,Co-N_(5)/DHC催化剂的高效4e-反应路径.且在10000次的加速老化测试中,Co-N_(5)/DHC半波电位仅降低了7 m V,稳定性优于Pt/C.以Co-N_(5)/DHC为阴极催化剂组装的ZAB开路电压为1.45 V,峰值输出功率密度能够达到160.7 m W cm^(-2),并能提供766.2 m A h gZn-1的比容量,展现出较高的应用前景.密度泛函理论计算表明,Co-N_(5)位点与缺陷氮掺杂碳的相互作用诱导Co中心位点电子的重新分布,降低了ORR反应能垒.综上,本文为设计与合成高性能的Co单原子催化剂,用于先进的可再生能源转换系统提供了一种新思路.
基金supported by the National Basic Research Program of China(973 Program,2009CB623506)the China Postdoctoral Science Foundation Project(2012M510101)+1 种基金the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(SKL201208SIC)the Shanghai Postdoctoral Scientific Program(12R21422000)~~