期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Reaction mechanism of self-propagating magnesiothermic reduction of ZrB_2 powders 被引量:1
1
作者 Yong-Ting Zheng Hong-Bo Li +2 位作者 Zhong-Hai Xu Jing Zhao Pan Yang 《Rare Metals》 SCIE EI CAS CSCD 2013年第4期408-413,共6页
Fine zirconium diboride (ZrB2) powders with high purity were successfully prepared by combustion synthesis through magnesiothermic reduction process in Mg-B2O3-ZrO2 system. The reaction mechanism was investigated by... Fine zirconium diboride (ZrB2) powders with high purity were successfully prepared by combustion synthesis through magnesiothermic reduction process in Mg-B2O3-ZrO2 system. The reaction mechanism was investigated by differential thermal analysis and quenching experiment. The results show that the whole magnesio-thermic reduction process includes three stages: first, molten B2O3 and Mg formed above the temperature of 650 ℃, and glassy B2O3 and solid ZrO2 particles were coated on the surface of the molten Mg; thus, the hollow balls can be formed when the molten Mg was exuded under capillary function. Second, ZrO2 particles reacted with molten Mg to form Zr and MgO with dissolution-precip-itation mechanism, which released a large amount of heat to induce the diffusion reaction between B203 and Mg to form B and MgO. Last, Zr reacted with B to form ZrB2 grains. The preparation of ZrB2 by self-propagating syn-thesis in Mg-B2O3-ZrO2 system is a solid-liquid-liquid reaction. 展开更多
关键词 Reaction mechanism magnesiothermicreduction Zirconium boride Self-propagating synthesis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部