The flotation process of native rare earth minerals such as bastnasite, monazite, mixed minerals of bastnasite and monazite, using the new effective collector Dh was studied, respectively, and the flotation properties...The flotation process of native rare earth minerals such as bastnasite, monazite, mixed minerals of bastnasite and monazite, using the new effective collector Dh was studied, respectively, and the flotation properties were described. The good qualities of the new collector Dh were revealed through comparing with other collector of rare earth minerals. The test results of different ore samples showed that at moderate pulp pH (8.5~9.5), rare earth minerals could be effectively separated from barium, calcium and silicon bearing intergrowth minerals (barite, calcite and silicate minerals) and high quality rare earth concentrates could be obtained successfully by the new collector Dh, acid silica gel, turpentine and reagents fitting together rationally. In order to determine optimum technical conditions, the effect of pulp pH, pulp temperature, pulp density and the effect of dosage of reagents (Dh and acid silica gel) on the flotation were investigated in the test. Simultaneously, the mechanism of the flotation of rare earth minerals from intergrowth minerals was explored. The infrared spectra for Dh and rare earth cation by analysis in theory showed that Dh formed chelate complex with rare earth cation and were adsorbed on the surfaces of rare earth minerals. The mechanism of the intergrowth minerals depressed by acid silica gel can be explained as gummy colloid hydrolyzed from acid silica gel which were selectively absorbed on the gangue minerals, making them hydrophilic and depressed, with pulp pH value of alkalescent.展开更多
The Piaotang deposit is one of the largest vein-type W-polymetallic deposits in southern Jiangxi Province,South China.The coexistence of wolframite and cassiterite is an important feature of the deposit.Based on detai...The Piaotang deposit is one of the largest vein-type W-polymetallic deposits in southern Jiangxi Province,South China.The coexistence of wolframite and cassiterite is an important feature of the deposit.Based on detailed petrographic observations,microthermometry of fluid inclusions in wolframite,cassiterite and intergrown quartz was undertaken.The inclusions in wolframite were observed by infrared microscope,while those in cassiterite and quartz were observed in visible light.The fluid inclusions in wolframite can be divided into two types:aqueous inclusions with a large vapor-phase proportion and aqueous inclusions with a small vapor-phase ratio.The homogenization temperature(Th)of inclusions in wolframite with large vapor-phase ratios ranged from 280℃ to 390℃,with salinity ranging from 3.1 to 7.2 wt%NaCl eq.In contrast,the Th values of inclusions with small vapor-phase ratios ranged from 216℃ to 264℃,with salinity values ranging from 3.5 to 9.3 wt%NaCl eq.T_(h) values of primary inclusions in cassiterite ranged from 316℃ to 380℃,with salinity ranging from 5.4 to 9.3 wt%NaCl eq.T_(h) values for primary fluid inclusions in quartz ranged from 162℃ to 309℃,with salinity values ranging from 1.2 to 6.7 wt%NaCl eq.The results show that the formation conditions of wolframite,cassiterite and intergrown quartz are not uniform.The evolutionary processes of fluids related to these three kinds of minerals are also significantly different.Intergrown quartz cannot provide the depositional conditions of wolframite and cassiterite.The fluids related to tungsten mineralization for the NaCl-H_(2)O system had a medium-to-high temperature and low salinity,while the fluids related to tin mineralization for the NaCl-H_(2)O system had a high temperature and medium-to-low salinity.The results of this study suggest that fluid cooling is the main mechanism for the precipitation of tungsten and tin.展开更多
Rutile separation from calcite, apatite and quartz by flotation was investigated. The results show that the rutile separation from calcium and silicon gangue minerals can be realized with alkyl-imino-bismethylene phos...Rutile separation from calcite, apatite and quartz by flotation was investigated. The results show that the rutile separation from calcium and silicon gangue minerals can be realized with alkyl-imino-bismethylene phosphoric acid (TF112) as a collector and sodium hexametaphosphate (SH) as a regulator.展开更多
In this paper, the effect of gangue minerals on the hydrophobic recovery of gold is being investigated using ores obtained from the active small scale gold mining sites in Tanzania. Gold ores of different gangue conte...In this paper, the effect of gangue minerals on the hydrophobic recovery of gold is being investigated using ores obtained from the active small scale gold mining sites in Tanzania. Gold ores of different gangue contents were tested. The effects of silica gangue and high sulphide gangue on gold attachment were examined including the effect of surface activators (potassium amyl xanthate) and the possibility of depressing the effects of gangue using reagents. The results were evaluated in terms of gold recovery, volumes and grade of concentrates formed. There was no change in gold recoveries when the amount of oxide gangue (quartz) in the ore was increased, indicating absence of competition between gold and quartz gangue. High sulphide contents in the ore above 6% reduced gold recoveries considerably. It was noted that potassium amyl xanthate surfactants increased the attachment of both gold and the sulphide gangue. Using lime at pH 10 it was possible to depress the sulphide gangue which is mainly pyrite and hence increased gold recoveries considerably.展开更多
In order to avoid environmental pollution from Coal gangue (CG) and copper tailings (CT), the utilization as cement clinker calcinations was experimentally investigated. Low-calcium limestone was also selected as ...In order to avoid environmental pollution from Coal gangue (CG) and copper tailings (CT), the utilization as cement clinker calcinations was experimentally investigated. Low-calcium limestone was also selected as another raw material. The clinker component and microstructure were analyzed by XRD and SEM. The experimental results showed that qualified cement clinker could be generated by substituting CG and CT compound for clay. While mixed with high-calcium limestone and low-calcium limestone, the calcinations temperature were 50 ℃ or 100 ℃ lower than that of clay. CT and CG contain oxygen-rich minerals and potential of geological rock energy. The energy of CG performs functions and drops down sintering temperature. The calcination time was shortened and the clinker sintering coal consumption reduced while substituting CG and CT for clay, and also served the reutilization of low-calcium limestone, CG and CT.展开更多
The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emiss...The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emissions.The overall proposition of this research is to develop a brand-new CO2 physical and chemical sequestration method by using solid waste of coal mining and cementitious material which are widely used for goaf backfilling in coal mining.This research developed a new testing system(constant temperature pressurized reaction chamber(CTPRC))to study the effects of different initial parameters on mineral carbonation such as different initial water-binder ratio,initial sample porosity and initial carbon dioxide pressure.The experimental results show that the CO2 consumption ratio is 15%,10%and 7%higher with relatively high initial water-binder ratio,initial sample porosity and initial CO2 pressure within 48 h.In addition,some physical and chemical evidence was found through the electron microscope scanning and XRD test to further explain the above test results.This proposed research will provide critical parameters for optimizing CO2 sequestration capacity in this cementitious backfilling material with forming agent.展开更多
文摘The flotation process of native rare earth minerals such as bastnasite, monazite, mixed minerals of bastnasite and monazite, using the new effective collector Dh was studied, respectively, and the flotation properties were described. The good qualities of the new collector Dh were revealed through comparing with other collector of rare earth minerals. The test results of different ore samples showed that at moderate pulp pH (8.5~9.5), rare earth minerals could be effectively separated from barium, calcium and silicon bearing intergrowth minerals (barite, calcite and silicate minerals) and high quality rare earth concentrates could be obtained successfully by the new collector Dh, acid silica gel, turpentine and reagents fitting together rationally. In order to determine optimum technical conditions, the effect of pulp pH, pulp temperature, pulp density and the effect of dosage of reagents (Dh and acid silica gel) on the flotation were investigated in the test. Simultaneously, the mechanism of the flotation of rare earth minerals from intergrowth minerals was explored. The infrared spectra for Dh and rare earth cation by analysis in theory showed that Dh formed chelate complex with rare earth cation and were adsorbed on the surfaces of rare earth minerals. The mechanism of the intergrowth minerals depressed by acid silica gel can be explained as gummy colloid hydrolyzed from acid silica gel which were selectively absorbed on the gangue minerals, making them hydrophilic and depressed, with pulp pH value of alkalescent.
基金supported by the Science Foundation for Outstanding Young Scholars (41822304)the Zhejiang Provincial Natural Science Foundation (LZ16D060001)。
文摘The Piaotang deposit is one of the largest vein-type W-polymetallic deposits in southern Jiangxi Province,South China.The coexistence of wolframite and cassiterite is an important feature of the deposit.Based on detailed petrographic observations,microthermometry of fluid inclusions in wolframite,cassiterite and intergrown quartz was undertaken.The inclusions in wolframite were observed by infrared microscope,while those in cassiterite and quartz were observed in visible light.The fluid inclusions in wolframite can be divided into two types:aqueous inclusions with a large vapor-phase proportion and aqueous inclusions with a small vapor-phase ratio.The homogenization temperature(Th)of inclusions in wolframite with large vapor-phase ratios ranged from 280℃ to 390℃,with salinity ranging from 3.1 to 7.2 wt%NaCl eq.In contrast,the Th values of inclusions with small vapor-phase ratios ranged from 216℃ to 264℃,with salinity values ranging from 3.5 to 9.3 wt%NaCl eq.T_(h) values of primary inclusions in cassiterite ranged from 316℃ to 380℃,with salinity ranging from 5.4 to 9.3 wt%NaCl eq.T_(h) values for primary fluid inclusions in quartz ranged from 162℃ to 309℃,with salinity values ranging from 1.2 to 6.7 wt%NaCl eq.The results show that the formation conditions of wolframite,cassiterite and intergrown quartz are not uniform.The evolutionary processes of fluids related to these three kinds of minerals are also significantly different.Intergrown quartz cannot provide the depositional conditions of wolframite and cassiterite.The fluids related to tungsten mineralization for the NaCl-H_(2)O system had a medium-to-high temperature and low salinity,while the fluids related to tin mineralization for the NaCl-H_(2)O system had a high temperature and medium-to-low salinity.The results of this study suggest that fluid cooling is the main mechanism for the precipitation of tungsten and tin.
文摘Rutile separation from calcite, apatite and quartz by flotation was investigated. The results show that the rutile separation from calcium and silicon gangue minerals can be realized with alkyl-imino-bismethylene phosphoric acid (TF112) as a collector and sodium hexametaphosphate (SH) as a regulator.
文摘In this paper, the effect of gangue minerals on the hydrophobic recovery of gold is being investigated using ores obtained from the active small scale gold mining sites in Tanzania. Gold ores of different gangue contents were tested. The effects of silica gangue and high sulphide gangue on gold attachment were examined including the effect of surface activators (potassium amyl xanthate) and the possibility of depressing the effects of gangue using reagents. The results were evaluated in terms of gold recovery, volumes and grade of concentrates formed. There was no change in gold recoveries when the amount of oxide gangue (quartz) in the ore was increased, indicating absence of competition between gold and quartz gangue. High sulphide contents in the ore above 6% reduced gold recoveries considerably. It was noted that potassium amyl xanthate surfactants increased the attachment of both gold and the sulphide gangue. Using lime at pH 10 it was possible to depress the sulphide gangue which is mainly pyrite and hence increased gold recoveries considerably.
基金Funded by the "11th-Five-Year" National Key Technologies R&D Program of China (No.2006BAC21B02)
文摘In order to avoid environmental pollution from Coal gangue (CG) and copper tailings (CT), the utilization as cement clinker calcinations was experimentally investigated. Low-calcium limestone was also selected as another raw material. The clinker component and microstructure were analyzed by XRD and SEM. The experimental results showed that qualified cement clinker could be generated by substituting CG and CT compound for clay. While mixed with high-calcium limestone and low-calcium limestone, the calcinations temperature were 50 ℃ or 100 ℃ lower than that of clay. CT and CG contain oxygen-rich minerals and potential of geological rock energy. The energy of CG performs functions and drops down sintering temperature. The calcination time was shortened and the clinker sintering coal consumption reduced while substituting CG and CT for clay, and also served the reutilization of low-calcium limestone, CG and CT.
基金the National Natural Science Foundation of China(No.51304207)the Fundamental Research Funds for the Key Laboratory of Coal-based CO2 capture and geological storage,China University of Mining and Technology(No.2016A03).
文摘The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emissions.The overall proposition of this research is to develop a brand-new CO2 physical and chemical sequestration method by using solid waste of coal mining and cementitious material which are widely used for goaf backfilling in coal mining.This research developed a new testing system(constant temperature pressurized reaction chamber(CTPRC))to study the effects of different initial parameters on mineral carbonation such as different initial water-binder ratio,initial sample porosity and initial carbon dioxide pressure.The experimental results show that the CO2 consumption ratio is 15%,10%and 7%higher with relatively high initial water-binder ratio,initial sample porosity and initial CO2 pressure within 48 h.In addition,some physical and chemical evidence was found through the electron microscope scanning and XRD test to further explain the above test results.This proposed research will provide critical parameters for optimizing CO2 sequestration capacity in this cementitious backfilling material with forming agent.