In order to synthesize the targeting drug carrier system,magnetic chitosan-5-fluorouracil nano-particles were prepared by using 5-fluorouracil(5-Fu)as model drug,Fe3O4 nano-particles as kernel,chitosan as enveloping m...In order to synthesize the targeting drug carrier system,magnetic chitosan-5-fluorouracil nano-particles were prepared by using 5-fluorouracil(5-Fu)as model drug,Fe3O4 nano-particles as kernel,chitosan as enveloping material and glutaraldehyde as cross linking agent through ultrasonic technique.The morphology of the magnetic chitosan-5-Fu nano-particles was observed with a transmission electron microscope(TEM).The results showed that magnetic chitosan-5-Fu nano-particles were prepared in spherical structure with a size range of 50-60 nm.The delivering capacity and drug releasing properties of magnetic chitosan-5-Fu nano-particles were investigated by UV-vis spectrum analysis.The results showed that the loading capacity was 13.4%and the cumulative release percentage in the phosphate buffer(pH=7.2)solutions was 68%in 30 h.These data indicate that the wrapped drug of magnetic chitosan-5-Fu nano-particles was slowly-released.The magnetic response of magnetic chitosan-5-Fu nano-particles was studied by UV-vis spectrometer to detect the changes of solution absorbance.Without external magnetic field,the nano-particle deposition rate was slow.When being subjected to 8 mT magnetic field,the particle sedimentation rate was increased rapidly.The results showed that magnetic chitosan-5-Fu nano-particles have a magnetic stability and strong targeting characteristics.展开更多
Zinc substituted cobalt ferrite nanoparticles (CoxZn1-xFe2O4, with x = 0.0, 0.2, 0.4, 0.8 and 1.0) were prepared via sol-gel route and the effect of zinc concentration on saturation magnetization and lattice parameter...Zinc substituted cobalt ferrite nanoparticles (CoxZn1-xFe2O4, with x = 0.0, 0.2, 0.4, 0.8 and 1.0) were prepared via sol-gel route and the effect of zinc concentration on saturation magnetization and lattice parameter were investigated. The particle sizes of the as obtained samples were found to be ~10 nm which increases upto ~92 nm on annealing at 1000oC. The frequency bands near 564-588 cm-1 and 425-442 cm-1 are assigned to the tetrahedral and octahedral clusters which confirm the presence of M-O stretching band in ferrites. The unit cell parameter ‘a’ increases linearly with increasing concentration of zinc due to larger ionic radii of Zn2+ ion . It was found that this substitution allows tunable changes in the magnetic properties of cobalt ferrite. Interestingly, saturation magnetization first increases upto x = 0.4 and then decreases for higher Zn substitution, thus tunable changes in magnetic properties of cobalt ferrite are possible. Source of such behaviour could be the variation of exchange interaction between the tetrahedral and the octahedral sites.展开更多
Purpose: The purpose of this study was to present a novel therapeutic strategy combining use of intracellular magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF) and bleomycin (BLM), and to evaluat...Purpose: The purpose of this study was to present a novel therapeutic strategy combining use of intracellular magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF) and bleomycin (BLM), and to evaluate its therapeutic effect using tumor-bearing mice. Materials and Methods: MNPs (Resovist?, 1.05 mg iron) were incorporated into the hemagglutinating virus of Japan-envelope (HVJ-E) vector (~5 × 109 particles) (HVJ-E/MNPs) by centrifugation at 10,000 × g for 5 min at 4°C. Tumor-bearing mice were prepared by inoculating Colon-26 cells subcutaneously into the backs of BALB/c mice. When the tumor volume reached ~100 mm3, HVJ-E/MNPs and/or BLM were injected directly into the tumor. The AMF was applied to the mice one hour after the injection of agents (AMF treatment). The mice injected with HVJ-E/MNPs were imaged using our magnetic particle imaging (MPI) scanner immediately (13 min) before, immediately (22 min) after, and 3, 7, and 14 days after the injection of agents, and the temporal changes of the average and maximum MPI pixel values in the tumor were quantitatively evaluated. The therapeutic effect was evaluated by calculating the relative tumor volume growth (RTVG) from the tumor volumes measured each day. Transmission electron microscopic (TEM) observation of resected tumors was also performed to confirm the intracellular distribution of MNPs. Results: The AMF treatment combined with BLM significantly decreased the RTVG value compared with AMF treatment alone at 9 to 14 days, and BLM alone at 3 to 5 days after AMF treatment. The average and maximum MPI pixel values in the tumor were almost constant for 14 days. TEM observation confirmed that most of the HVJ-E/MNPs were internalized into tumor cells within one hour after injection. Conclusion: A novel therapeutic strategy with use of AMF treatment and BLM was presented, and the time-dependent change of MNPs in tumors was evaluated using MPI. The present results suggest that this novel strategy can suppress tumor volume growth over AMF treatment or BLM alone, and can be performed repeatedly with a single injection of HVJ-E/MNPs. They also suggest that HVJ-E is effective for internalizing MNPs into cancer cells and that MPI allows for longitudinal monitoring of the distribution of MNPs in tumors.展开更多
Nickel Oxide (NiO) is an important transition metal oxide with cubic lattice structure. Among the magnetic nanoparticles, fabrication of nickel nanoparticles is often more difficult than that of the other particles. T...Nickel Oxide (NiO) is an important transition metal oxide with cubic lattice structure. Among the magnetic nanoparticles, fabrication of nickel nanoparticles is often more difficult than that of the other particles. This is because they are easily oxidized. To achieve pure nickel nanocrystals, numerous methods have been conducted in organic environments in order to prevent formation of hydroxide or oxidation. In the present work, we report the synthesis of NiO nanoparticles. Magnetic properties of NiO nanoparticles with different sizes and at different temperatures are compared. The phase structures, particle sizes and magnetic properties of NiO nanoparticles have been characterized by X-ray diffraction, TEM images and Vibrating Sample Magnetometer (VSM). We collected the experimental data reported in the literature, for the same conditions, and after fitting, extrapolating and doing some calculations. The magnetization for smaller nanoparticles is bigger for the samples we consider here. This difference could be explained by the difference of surface volume ratio of nanoparticle which shows the contribution of the paramagnetic surface is more important with respect to the anti-ferromagnetism of the core for smaller particles. Also the nanoparticle at lower temperatures shows bigger magnetization.展开更多
The nanoparticles exhibit some novel optical and magnetic properties, which are different from its bulk material. Cobalt oxide has been known as a semi-conductor compound of p type with a Spinel structure. Therefore, ...The nanoparticles exhibit some novel optical and magnetic properties, which are different from its bulk material. Cobalt oxide has been known as a semi-conductor compound of p type with a Spinel structure. Therefore, they are used as gas sensor and absorbent of solar energy. Furthermore, they are employed as an effective catalyzer in environmental clearing. In the thermal gradation method, carbonyl cobalt Co2(CO)8 is often used as a precursor, though cobalt carbonyl is very toxic and expensive. Magnetic compounds have been among interesting issues for human beings for over 4000 years. In large societies, magnetic compounds including computer disks, credit cards, speakers, coolers, automatic doors, and many other devices can be observed on a daily basis. The structure and morphology of as-prepared Co3O4 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The TEM images showed that the product nanoparticles consisted of dispersive quasi- spherical particles with a narrow size distribution ranged from 5 to 15 nm and an average size around 10 nm. The magnetic measurements confirmed that the Co3O4 nanoparticles show a little ferromagnetic behavior which could be attributed to the uncompensated surface spins and finite size effects. The ferromagnetic order of the Co3O4 nanoparticles is raised with increasing the decomposition temperature.展开更多
Nano-Fe3O4 particles were prepared by a two-step microemulsion method, the influence of molar ratio of water to NP-5 (R), alkali concentration and temperature on dispersibility and shape of the nanoparticles were disc...Nano-Fe3O4 particles were prepared by a two-step microemulsion method, the influence of molar ratio of water to NP-5 (R), alkali concentration and temperature on dispersibility and shape of the nanoparticles were discussed. Magnetic studies were also carried out using VSM in this paper. It was found that the optimum preparation parameters are R = 6.0, alkali concentration = 2.5 mol.L–1, initial total iron concentration as 0.88 mol.L–1, and the temperature being 30°C, the prepared nano magnetite particles have uniform size and good dispersibility with a crystal structure belonging to cubicFe3O4 and lattice parameters of a = 8.273 ?. The results of magnetic studies show, magnetic properties of particles are influenced by dispersibility of nanoparticles which depends on size of clusters. The better dispersibility of nanoparticles leads to more ordered inner magnetic vector, and so the stronger magnetic behavior of nano-Fe3O4 particles.展开更多
The aim of this work was to investigate the size-related magnetism for the single-domain Co Fe2O4 nano-particles synthesized using the hydrothermal method. The effects of the reaction temperature and the reaction time...The aim of this work was to investigate the size-related magnetism for the single-domain Co Fe2O4 nano-particles synthesized using the hydrothermal method. The effects of the reaction temperature and the reaction time on the lattice constants, particle morphologies, and the room-temperature magnetic properties were studied from the X-ray diffraction, the transmission electron microscope, and the vibrating-sample magnetometer. The experimental results show that the samples are composed of Co Fe2O4 nano-particles with an average crystallite size(D) smaller than 40 nm, and the magnetic properties of the samples can be manipulated in a wide range: the MS values vary from smaller than 50 emu/g to close to 80 emu/g, and the HC values are between about 200 Oe and 2000 Oe. Additionally, the relationship between HC and 1/D^3/2 satisfi es linearship, showing the characteristic of single-domain structure. These results indicate that the single-domain Co Fe2O4 nano-particles with size controlled between the superparamagnetic critical size and single-domain critical size can be easily prepared using this hydrothermal method.展开更多
The purpose of this study was to present a lock-in-amplifier model for analyzing the behavior of signal harmonics in magnetic particle imaging (MPI) and some simulation results based on this model. In the lock-in-ampl...The purpose of this study was to present a lock-in-amplifier model for analyzing the behavior of signal harmonics in magnetic particle imaging (MPI) and some simulation results based on this model. In the lock-in-amplifier model, the signal induced by magnetic nanoparticles (MNPs) in a receiving coil was multiplied with a reference signal, and was then fed through a low-pass filter to extract the DC component of the signal (output signal). The MPI signal was defined as the mean of the absolute value of the output signal. The magnetization and particle size distribution of MNPs were assumed to obey the Langevin theory of paramagnetism and a log-normal distribution, respectively, and the strength of the selection magnetic field (SMF) in MPI was assumed to be given by the product of the gradient strength of the SMF and the distance from the field-free region (x). In addition, Gaussian noise was added to the signal induced by MNPs using normally-distributed random numbers. The relationships between the MPI signal and x were calculated for the odd- and even-numbered harmonics and were investigated for various time constants of the low-pass filter used in the lock-in amplifier and particle sizes and their distributions of MNPs. We found that the behavior of the MPI signal largely depended on the time constant of the low-pass filter and the particle size of MNPs. This lock-in-amplifier model will be useful for better understanding, optimizing, and developing MPI, and for designing MNPs appropriate for MPI.展开更多
The purpose of this study was to evaluate the effectiveness of intracellular magnetic hyperthermia treatment (MHT) in comparison with that of extracellular MHT using magnetic particle imaging (MPI). Colon-26 cells wer...The purpose of this study was to evaluate the effectiveness of intracellular magnetic hyperthermia treatment (MHT) in comparison with that of extracellular MHT using magnetic particle imaging (MPI). Colon-26 cells were implanted subcutaneously into the backs of 8-week-old male BALB/c mice. When the tumor volume reached approximately 100 mm3, the mice were divided into control (n = 10), extracellular MHT (n = 8), and intracellular MHT groups (n = 7). In the control group, MHT was not performed. In the extracellular MHT and intracellular MHT groups, the tumors were injected directly with magnetic nanoparticles (MNPs) (400 mM Resovist®) and were heated for 20 min using an alternating magnetic field. During MHT, the temperatures of the tumor and rectum were measured using optical fiber thermometers. In the extracellular MHT group, MHT was performed 15 min after the injection of MNPs, whereas MHT was performed one day after the injection of MNPs in the intracellular MHT group. In both groups, MPI images were obtained using our MPI scanner immediately before, immediately after, and 7 and 14 days after MHT. After the MPI studies, we drew a region of interest (ROI) on the tumor in the MPI image and calculated the average, maximum, and total MPI values and the number of pixels within the ROI. Transmission electron microscopic (TEM) images were also obtained from resected tumors. In all groups, tumor volume was measured every day and the relative tumor volume growth (RTVG) was calculated. The TEM images showed that almost all the MNPs were aggregated in the extracellular space in the extracellular MHT group, whereas they were contained within the intracellular space in the intracellular MHT group. Although the temperature of the tumor in the intracellular MHT group was significantly lower than that in the extracellular MHT group, the RTVG value in the intracellular MHT group was significantly lower than that in the control group 2 days or more after MHT and that in the extracellular MHT group 3, 4, and 5 days after MHT. The average MPI value normalized by that immediately before MHT in the intracellular MHT group was significantly higher than that in the extracellular MHT group immediately and 7 days after MHT. The maximum and total MPI values normalized by those immediately before MHT in the intracellular MHT group were significantly higher than those in the extracellular MHT group 7 days after MHT, suggesting that the temporal change of MNPs within the tumor in the intracellular MHT group was smaller than that in the extracellular MHT group. Our results suggest that intracellular MHT is more cytotoxic than extracellular MHT in spite of a lower temperature rise of tumors, and that MPI is useful for evaluating the difference in the temporal change of MNPs in the tumor between extracellular MHT and intracellular MHT.展开更多
Purpose: Magnetic particle imaging (MPI) allows for imaging of the spatial distribution of magnetic nanoparticles (MNPs) in positive contrast, with high sensitivity, high spatial resolution, and high imaging speed. It...Purpose: Magnetic particle imaging (MPI) allows for imaging of the spatial distribution of magnetic nanoparticles (MNPs) in positive contrast, with high sensitivity, high spatial resolution, and high imaging speed. It is necessary to increase the signal-to-noise ratio to enhance the reliability of MPI. The purpose of this study was to investigate the effect of signal filtering on the image quality and quantitativity in projection-based MPI using phantoms. Materials and Methods: We fabricated two kinds of phantom (cylindrical tube phantom with a diameter of 6 mm and A-shaped phantom) and evaluated the effect of signal filtering in terms of root-mean-square (RMS) granularity and the correlation coefficient between iron concentrations of MNPs and average MPI values for four filter modes (THRU, BPF, BEF, and LPF). In the THRU mode, the signal input was output without passing through the filter. In the BPF mode, only the third-harmonic signal was passed using a band-pass filter (central frequency: 1200 Hz, band width: 1/3 octave). In the BEF mode, the first-harmonic signal was eliminated using a band-elimination filter (central frequency: 400 Hz, band width: 1/3 octave). In the LPF mode, only the signal with a frequency less than the third-harmonic frequency was passed using a low-pass filter (cut-off frequency: 1200 Hz, -24 ± 2 dB/octave). The RMS granularity was obtained by calculating standard deviations of the pixel values in the MPI image without MNPs, whereas average MPI values were obtained by drawing a circular region of interest with a diameter of 6 mm on the MPI image of the cylindrical tube phantom. Results: When using the filtered back-projection (FBP) method with a ramp filter for image reconstruction, the RMS granularity and correlation coefficient decreased in the order of THRU, BPF, BEF, and LPF. In the BPF mode, however, some artifacts were observed. When using the maximum likelihood-expectation maximization (ML-EM) algorithm with an iteration number of 15, the correlation coefficient decreased in the order of THRU, BPF, BEF, and LPF, whereas the RMS granularity did not largely depend on the filter mode and was significantly (p Conclusion: The BEF mode is adequate for the FBP method in projection-based MPI, whereas THRU is a best option in use of the ML-EM algorithm.展开更多
The targeted drug delivery and targeted drug therapy transport a drug directly to the center of the disease under various conditions and thereby treat it deliber- ately without effects on the body. This paper studies ...The targeted drug delivery and targeted drug therapy transport a drug directly to the center of the disease under various conditions and thereby treat it deliber- ately without effects on the body. This paper studies the magnetic drug targeting (MDT) technique by particle tracking in the presence of magnetic field in bifurcation vessels of a healthy person and a diabetes patient. The Lagrangian particle tracking is performed to estimate particle behavior under effects of imposed magnetic field gradients along the bifurcation. The results show that the magnetic field increases the volume fraction of particle in the target region, and the efficiency of MDT on a patient with the diabetes disease is better than a healthy person. Also, for the higher magnetic numbers, the flow in the upper branch is strongly affected by the magnetic field.展开更多
Pt-based magnetic nano catalysts are one of the most suitable cand idates for electrocatalytic materials due to their high electrochemistry activity and retrievability.Unfortunately,the inferior durability prevents th...Pt-based magnetic nano catalysts are one of the most suitable cand idates for electrocatalytic materials due to their high electrochemistry activity and retrievability.Unfortunately,the inferior durability prevents them from being scaled-up,limiting their commercial applications.Herein,an antiferromagnetic element Mn was introduced into PtCo nanostructured alloy to synthesize uniform Mn-PtCo truncated octahedral nanoparticles(TONPs)by one-pot method.Our results show that Mn can tune the blocking temperature of Mn-PtCo TONPs due to its an tiferromag netism.At low temperatures,Mn-PtCo TONPs are ferromag netic,and the coercivity in creases gradually with in creasi ng Mn contents.At room temperature,the Mn-PtCo TONPs display superparamag netic behavior,which is greatly helpful for in dustrial recycling.Mn doping can not only modify the electronic structure of PtCo TONPs but also enhanee electrocatalytic performance for methanol oxidation reaction.The maximum specific activity of Mn-PtCo-3 reaches 8.1 A`m^-2,3.6 times of commercial Pt/C(2.2 A·m^-2)and 1.4 times of PtCo TONPs(5.6 A`m^-2),respectively.The mass activity decreases by only 30%after 2,000 cycles,while it is 45%and 99%(nearly inactive)for PtCo TONPs and commercial Pt/C catalysts,respectively.展开更多
The fluidization behavior of ZnO nano-particles in magnetic fluidized bed (MFB) by adding coarse magnetic particles was investigated, followed by the co-fluidization of mixtures of ZnO and SiO2 nano-particles. For s...The fluidization behavior of ZnO nano-particles in magnetic fluidized bed (MFB) by adding coarse magnetic particles was investigated, followed by the co-fluidization of mixtures of ZnO and SiO2 nano-particles. For such co-fluidization, bed expansion was found to change smoothly with gas velocity through a range of stable operation. By measuring the bed expansion ratio and pressure drop, a stability diagram for the mixture in MFB was obtained. Within this stable operation range, with increasing gas velocity the pressure drop hardly changes as the bed expands, up to an expansion ratio of more than 4.展开更多
We prepared Fe3O4 nanoparticles using chemical coprecipitation and studied the factors affecting the magnetic characteristics of nano-Fe3O4 particles.We identified four factors and three levels of an orthogonal experi...We prepared Fe3O4 nanoparticles using chemical coprecipitation and studied the factors affecting the magnetic characteristics of nano-Fe3O4 particles.We identified four factors and three levels of an orthogonal experiment and investigated these four factors that affect the magnetic characteristics of the Fe3O4 particles.We obtained important information from this investigation.The Fe3+ to Fe2+ molar ratio,the iron precursor salt,the amount of surfactant and the amount of alkali were found to be important.We also studied the influence of the order of alkali and surfactant addition,the aging time and the stirring speed on the magnetic characteristics of the nano-Fe3O4 particles.The Fe3O4 preparation process was also analyzed.展开更多
This paper presents experimental results on weakly magnetic field-assisted synthesis of magnetite (Fe3O4) nano-particles in an oxidative co-precipitation method, in comparison to the case without magnetic induction....This paper presents experimental results on weakly magnetic field-assisted synthesis of magnetite (Fe3O4) nano-particles in an oxidative co-precipitation method, in comparison to the case without magnetic induction. The XRD results show that a weakly magnetic induction below 220 Gs could accelerate the phase transformation from goethite (α-FeOOH) to magnetite (Fe3O4), and affect the crystal structure, the particle size/morphology and magnetic response of the magnetite nano-particles synthesized. In addition, a higher concentration of the FeCl2 solution in the synthesis reaction led to finer particles, both with and without magnetic induction.展开更多
Magnetic Fe3O4 nanoparticles were synthesized via the coprecipitation of ferrous and ferric ion. The morphology and magnetic properties of the magnetic Fe3O4 nanoparticles were investigated by transmission electron mi...Magnetic Fe3O4 nanoparticles were synthesized via the coprecipitation of ferrous and ferric ion. The morphology and magnetic properties of the magnetic Fe3O4 nanoparticles were investigated by transmission electron microscopy(TEM) and superconducting quantum interference device. Furthermore, the Fe3O4-porphyrin nanocompo- site particles(FeOPNCPs) are prepared with Fe3O4 and porphyrin by sol-gel method. The patterns of FeOPNCPs were also characterized by means of scanning electron microscopy(SEM) and TEM. The optical and magnetic properties of FeOPNCPs were investigated on a UV-Vis spectrophotometer, a fluorescence spectrophotometer and a supercon- ducting quantum interference device. These experimental results show that FeOPNCPs not only possess optical features of porphvrin but also retain the superoaramagnetic features of Fe3O4 nanoparticles.展开更多
基金Projects(30572455,30670990)supported by the National Natural Science Foundation of ChinaProject(20060390891)supported by Postdoctor Foundation of China+1 种基金Project(NCET-06-0685)supported by the Program of New Century Excellent Talent in University of Ministry of Education of ChinaProject(2006FJ4243)supported by Science and Technology of Hunan Province,China
文摘In order to synthesize the targeting drug carrier system,magnetic chitosan-5-fluorouracil nano-particles were prepared by using 5-fluorouracil(5-Fu)as model drug,Fe3O4 nano-particles as kernel,chitosan as enveloping material and glutaraldehyde as cross linking agent through ultrasonic technique.The morphology of the magnetic chitosan-5-Fu nano-particles was observed with a transmission electron microscope(TEM).The results showed that magnetic chitosan-5-Fu nano-particles were prepared in spherical structure with a size range of 50-60 nm.The delivering capacity and drug releasing properties of magnetic chitosan-5-Fu nano-particles were investigated by UV-vis spectrum analysis.The results showed that the loading capacity was 13.4%and the cumulative release percentage in the phosphate buffer(pH=7.2)solutions was 68%in 30 h.These data indicate that the wrapped drug of magnetic chitosan-5-Fu nano-particles was slowly-released.The magnetic response of magnetic chitosan-5-Fu nano-particles was studied by UV-vis spectrometer to detect the changes of solution absorbance.Without external magnetic field,the nano-particle deposition rate was slow.When being subjected to 8 mT magnetic field,the particle sedimentation rate was increased rapidly.The results showed that magnetic chitosan-5-Fu nano-particles have a magnetic stability and strong targeting characteristics.
文摘Zinc substituted cobalt ferrite nanoparticles (CoxZn1-xFe2O4, with x = 0.0, 0.2, 0.4, 0.8 and 1.0) were prepared via sol-gel route and the effect of zinc concentration on saturation magnetization and lattice parameter were investigated. The particle sizes of the as obtained samples were found to be ~10 nm which increases upto ~92 nm on annealing at 1000oC. The frequency bands near 564-588 cm-1 and 425-442 cm-1 are assigned to the tetrahedral and octahedral clusters which confirm the presence of M-O stretching band in ferrites. The unit cell parameter ‘a’ increases linearly with increasing concentration of zinc due to larger ionic radii of Zn2+ ion . It was found that this substitution allows tunable changes in the magnetic properties of cobalt ferrite. Interestingly, saturation magnetization first increases upto x = 0.4 and then decreases for higher Zn substitution, thus tunable changes in magnetic properties of cobalt ferrite are possible. Source of such behaviour could be the variation of exchange interaction between the tetrahedral and the octahedral sites.
文摘Purpose: The purpose of this study was to present a novel therapeutic strategy combining use of intracellular magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF) and bleomycin (BLM), and to evaluate its therapeutic effect using tumor-bearing mice. Materials and Methods: MNPs (Resovist?, 1.05 mg iron) were incorporated into the hemagglutinating virus of Japan-envelope (HVJ-E) vector (~5 × 109 particles) (HVJ-E/MNPs) by centrifugation at 10,000 × g for 5 min at 4°C. Tumor-bearing mice were prepared by inoculating Colon-26 cells subcutaneously into the backs of BALB/c mice. When the tumor volume reached ~100 mm3, HVJ-E/MNPs and/or BLM were injected directly into the tumor. The AMF was applied to the mice one hour after the injection of agents (AMF treatment). The mice injected with HVJ-E/MNPs were imaged using our magnetic particle imaging (MPI) scanner immediately (13 min) before, immediately (22 min) after, and 3, 7, and 14 days after the injection of agents, and the temporal changes of the average and maximum MPI pixel values in the tumor were quantitatively evaluated. The therapeutic effect was evaluated by calculating the relative tumor volume growth (RTVG) from the tumor volumes measured each day. Transmission electron microscopic (TEM) observation of resected tumors was also performed to confirm the intracellular distribution of MNPs. Results: The AMF treatment combined with BLM significantly decreased the RTVG value compared with AMF treatment alone at 9 to 14 days, and BLM alone at 3 to 5 days after AMF treatment. The average and maximum MPI pixel values in the tumor were almost constant for 14 days. TEM observation confirmed that most of the HVJ-E/MNPs were internalized into tumor cells within one hour after injection. Conclusion: A novel therapeutic strategy with use of AMF treatment and BLM was presented, and the time-dependent change of MNPs in tumors was evaluated using MPI. The present results suggest that this novel strategy can suppress tumor volume growth over AMF treatment or BLM alone, and can be performed repeatedly with a single injection of HVJ-E/MNPs. They also suggest that HVJ-E is effective for internalizing MNPs into cancer cells and that MPI allows for longitudinal monitoring of the distribution of MNPs in tumors.
文摘Nickel Oxide (NiO) is an important transition metal oxide with cubic lattice structure. Among the magnetic nanoparticles, fabrication of nickel nanoparticles is often more difficult than that of the other particles. This is because they are easily oxidized. To achieve pure nickel nanocrystals, numerous methods have been conducted in organic environments in order to prevent formation of hydroxide or oxidation. In the present work, we report the synthesis of NiO nanoparticles. Magnetic properties of NiO nanoparticles with different sizes and at different temperatures are compared. The phase structures, particle sizes and magnetic properties of NiO nanoparticles have been characterized by X-ray diffraction, TEM images and Vibrating Sample Magnetometer (VSM). We collected the experimental data reported in the literature, for the same conditions, and after fitting, extrapolating and doing some calculations. The magnetization for smaller nanoparticles is bigger for the samples we consider here. This difference could be explained by the difference of surface volume ratio of nanoparticle which shows the contribution of the paramagnetic surface is more important with respect to the anti-ferromagnetism of the core for smaller particles. Also the nanoparticle at lower temperatures shows bigger magnetization.
文摘The nanoparticles exhibit some novel optical and magnetic properties, which are different from its bulk material. Cobalt oxide has been known as a semi-conductor compound of p type with a Spinel structure. Therefore, they are used as gas sensor and absorbent of solar energy. Furthermore, they are employed as an effective catalyzer in environmental clearing. In the thermal gradation method, carbonyl cobalt Co2(CO)8 is often used as a precursor, though cobalt carbonyl is very toxic and expensive. Magnetic compounds have been among interesting issues for human beings for over 4000 years. In large societies, magnetic compounds including computer disks, credit cards, speakers, coolers, automatic doors, and many other devices can be observed on a daily basis. The structure and morphology of as-prepared Co3O4 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The TEM images showed that the product nanoparticles consisted of dispersive quasi- spherical particles with a narrow size distribution ranged from 5 to 15 nm and an average size around 10 nm. The magnetic measurements confirmed that the Co3O4 nanoparticles show a little ferromagnetic behavior which could be attributed to the uncompensated surface spins and finite size effects. The ferromagnetic order of the Co3O4 nanoparticles is raised with increasing the decomposition temperature.
文摘Nano-Fe3O4 particles were prepared by a two-step microemulsion method, the influence of molar ratio of water to NP-5 (R), alkali concentration and temperature on dispersibility and shape of the nanoparticles were discussed. Magnetic studies were also carried out using VSM in this paper. It was found that the optimum preparation parameters are R = 6.0, alkali concentration = 2.5 mol.L–1, initial total iron concentration as 0.88 mol.L–1, and the temperature being 30°C, the prepared nano magnetite particles have uniform size and good dispersibility with a crystal structure belonging to cubicFe3O4 and lattice parameters of a = 8.273 ?. The results of magnetic studies show, magnetic properties of particles are influenced by dispersibility of nanoparticles which depends on size of clusters. The better dispersibility of nanoparticles leads to more ordered inner magnetic vector, and so the stronger magnetic behavior of nano-Fe3O4 particles.
基金Funded by the National Natural Science Foundation of China(51172166)the PhD Programs Foundation of City College,Wuhan University of Science and Technology(2014CYBSKY003)
文摘The aim of this work was to investigate the size-related magnetism for the single-domain Co Fe2O4 nano-particles synthesized using the hydrothermal method. The effects of the reaction temperature and the reaction time on the lattice constants, particle morphologies, and the room-temperature magnetic properties were studied from the X-ray diffraction, the transmission electron microscope, and the vibrating-sample magnetometer. The experimental results show that the samples are composed of Co Fe2O4 nano-particles with an average crystallite size(D) smaller than 40 nm, and the magnetic properties of the samples can be manipulated in a wide range: the MS values vary from smaller than 50 emu/g to close to 80 emu/g, and the HC values are between about 200 Oe and 2000 Oe. Additionally, the relationship between HC and 1/D^3/2 satisfi es linearship, showing the characteristic of single-domain structure. These results indicate that the single-domain Co Fe2O4 nano-particles with size controlled between the superparamagnetic critical size and single-domain critical size can be easily prepared using this hydrothermal method.
文摘The purpose of this study was to present a lock-in-amplifier model for analyzing the behavior of signal harmonics in magnetic particle imaging (MPI) and some simulation results based on this model. In the lock-in-amplifier model, the signal induced by magnetic nanoparticles (MNPs) in a receiving coil was multiplied with a reference signal, and was then fed through a low-pass filter to extract the DC component of the signal (output signal). The MPI signal was defined as the mean of the absolute value of the output signal. The magnetization and particle size distribution of MNPs were assumed to obey the Langevin theory of paramagnetism and a log-normal distribution, respectively, and the strength of the selection magnetic field (SMF) in MPI was assumed to be given by the product of the gradient strength of the SMF and the distance from the field-free region (x). In addition, Gaussian noise was added to the signal induced by MNPs using normally-distributed random numbers. The relationships between the MPI signal and x were calculated for the odd- and even-numbered harmonics and were investigated for various time constants of the low-pass filter used in the lock-in amplifier and particle sizes and their distributions of MNPs. We found that the behavior of the MPI signal largely depended on the time constant of the low-pass filter and the particle size of MNPs. This lock-in-amplifier model will be useful for better understanding, optimizing, and developing MPI, and for designing MNPs appropriate for MPI.
文摘The purpose of this study was to evaluate the effectiveness of intracellular magnetic hyperthermia treatment (MHT) in comparison with that of extracellular MHT using magnetic particle imaging (MPI). Colon-26 cells were implanted subcutaneously into the backs of 8-week-old male BALB/c mice. When the tumor volume reached approximately 100 mm3, the mice were divided into control (n = 10), extracellular MHT (n = 8), and intracellular MHT groups (n = 7). In the control group, MHT was not performed. In the extracellular MHT and intracellular MHT groups, the tumors were injected directly with magnetic nanoparticles (MNPs) (400 mM Resovist®) and were heated for 20 min using an alternating magnetic field. During MHT, the temperatures of the tumor and rectum were measured using optical fiber thermometers. In the extracellular MHT group, MHT was performed 15 min after the injection of MNPs, whereas MHT was performed one day after the injection of MNPs in the intracellular MHT group. In both groups, MPI images were obtained using our MPI scanner immediately before, immediately after, and 7 and 14 days after MHT. After the MPI studies, we drew a region of interest (ROI) on the tumor in the MPI image and calculated the average, maximum, and total MPI values and the number of pixels within the ROI. Transmission electron microscopic (TEM) images were also obtained from resected tumors. In all groups, tumor volume was measured every day and the relative tumor volume growth (RTVG) was calculated. The TEM images showed that almost all the MNPs were aggregated in the extracellular space in the extracellular MHT group, whereas they were contained within the intracellular space in the intracellular MHT group. Although the temperature of the tumor in the intracellular MHT group was significantly lower than that in the extracellular MHT group, the RTVG value in the intracellular MHT group was significantly lower than that in the control group 2 days or more after MHT and that in the extracellular MHT group 3, 4, and 5 days after MHT. The average MPI value normalized by that immediately before MHT in the intracellular MHT group was significantly higher than that in the extracellular MHT group immediately and 7 days after MHT. The maximum and total MPI values normalized by those immediately before MHT in the intracellular MHT group were significantly higher than those in the extracellular MHT group 7 days after MHT, suggesting that the temporal change of MNPs within the tumor in the intracellular MHT group was smaller than that in the extracellular MHT group. Our results suggest that intracellular MHT is more cytotoxic than extracellular MHT in spite of a lower temperature rise of tumors, and that MPI is useful for evaluating the difference in the temporal change of MNPs in the tumor between extracellular MHT and intracellular MHT.
文摘Purpose: Magnetic particle imaging (MPI) allows for imaging of the spatial distribution of magnetic nanoparticles (MNPs) in positive contrast, with high sensitivity, high spatial resolution, and high imaging speed. It is necessary to increase the signal-to-noise ratio to enhance the reliability of MPI. The purpose of this study was to investigate the effect of signal filtering on the image quality and quantitativity in projection-based MPI using phantoms. Materials and Methods: We fabricated two kinds of phantom (cylindrical tube phantom with a diameter of 6 mm and A-shaped phantom) and evaluated the effect of signal filtering in terms of root-mean-square (RMS) granularity and the correlation coefficient between iron concentrations of MNPs and average MPI values for four filter modes (THRU, BPF, BEF, and LPF). In the THRU mode, the signal input was output without passing through the filter. In the BPF mode, only the third-harmonic signal was passed using a band-pass filter (central frequency: 1200 Hz, band width: 1/3 octave). In the BEF mode, the first-harmonic signal was eliminated using a band-elimination filter (central frequency: 400 Hz, band width: 1/3 octave). In the LPF mode, only the signal with a frequency less than the third-harmonic frequency was passed using a low-pass filter (cut-off frequency: 1200 Hz, -24 ± 2 dB/octave). The RMS granularity was obtained by calculating standard deviations of the pixel values in the MPI image without MNPs, whereas average MPI values were obtained by drawing a circular region of interest with a diameter of 6 mm on the MPI image of the cylindrical tube phantom. Results: When using the filtered back-projection (FBP) method with a ramp filter for image reconstruction, the RMS granularity and correlation coefficient decreased in the order of THRU, BPF, BEF, and LPF. In the BPF mode, however, some artifacts were observed. When using the maximum likelihood-expectation maximization (ML-EM) algorithm with an iteration number of 15, the correlation coefficient decreased in the order of THRU, BPF, BEF, and LPF, whereas the RMS granularity did not largely depend on the filter mode and was significantly (p Conclusion: The BEF mode is adequate for the FBP method in projection-based MPI, whereas THRU is a best option in use of the ML-EM algorithm.
文摘The targeted drug delivery and targeted drug therapy transport a drug directly to the center of the disease under various conditions and thereby treat it deliber- ately without effects on the body. This paper studies the magnetic drug targeting (MDT) technique by particle tracking in the presence of magnetic field in bifurcation vessels of a healthy person and a diabetes patient. The Lagrangian particle tracking is performed to estimate particle behavior under effects of imposed magnetic field gradients along the bifurcation. The results show that the magnetic field increases the volume fraction of particle in the target region, and the efficiency of MDT on a patient with the diabetes disease is better than a healthy person. Also, for the higher magnetic numbers, the flow in the upper branch is strongly affected by the magnetic field.
基金The work was supported by the National Natural Science Foundation(Nos.51625101,51431009,5180118&and 51701202)the State Key Development Program for Basic Research of China(No.2015CB921401)+3 种基金the Fundamental Research Funds for the Central University Universities of China(No.FRF-TP-16-001C2)the China Postdoctoral Science Foundation(No.2018M632792)Startup Research Fund of Zhengzhou University(No.32210815)Bejing Natural Science Foundation(No.Z180014).
文摘Pt-based magnetic nano catalysts are one of the most suitable cand idates for electrocatalytic materials due to their high electrochemistry activity and retrievability.Unfortunately,the inferior durability prevents them from being scaled-up,limiting their commercial applications.Herein,an antiferromagnetic element Mn was introduced into PtCo nanostructured alloy to synthesize uniform Mn-PtCo truncated octahedral nanoparticles(TONPs)by one-pot method.Our results show that Mn can tune the blocking temperature of Mn-PtCo TONPs due to its an tiferromag netism.At low temperatures,Mn-PtCo TONPs are ferromag netic,and the coercivity in creases gradually with in creasi ng Mn contents.At room temperature,the Mn-PtCo TONPs display superparamag netic behavior,which is greatly helpful for in dustrial recycling.Mn doping can not only modify the electronic structure of PtCo TONPs but also enhanee electrocatalytic performance for methanol oxidation reaction.The maximum specific activity of Mn-PtCo-3 reaches 8.1 A`m^-2,3.6 times of commercial Pt/C(2.2 A·m^-2)and 1.4 times of PtCo TONPs(5.6 A`m^-2),respectively.The mass activity decreases by only 30%after 2,000 cycles,while it is 45%and 99%(nearly inactive)for PtCo TONPs and commercial Pt/C catalysts,respectively.
文摘The fluidization behavior of ZnO nano-particles in magnetic fluidized bed (MFB) by adding coarse magnetic particles was investigated, followed by the co-fluidization of mixtures of ZnO and SiO2 nano-particles. For such co-fluidization, bed expansion was found to change smoothly with gas velocity through a range of stable operation. By measuring the bed expansion ratio and pressure drop, a stability diagram for the mixture in MFB was obtained. Within this stable operation range, with increasing gas velocity the pressure drop hardly changes as the bed expands, up to an expansion ratio of more than 4.
基金supported by the National Natural Science Foundation of China (50875017)the Beijing Municipal Science & Technology Com-mission (Z080003032208017)
文摘We prepared Fe3O4 nanoparticles using chemical coprecipitation and studied the factors affecting the magnetic characteristics of nano-Fe3O4 particles.We identified four factors and three levels of an orthogonal experiment and investigated these four factors that affect the magnetic characteristics of the Fe3O4 particles.We obtained important information from this investigation.The Fe3+ to Fe2+ molar ratio,the iron precursor salt,the amount of surfactant and the amount of alkali were found to be important.We also studied the influence of the order of alkali and surfactant addition,the aging time and the stirring speed on the magnetic characteristics of the nano-Fe3O4 particles.The Fe3O4 preparation process was also analyzed.
文摘This paper presents experimental results on weakly magnetic field-assisted synthesis of magnetite (Fe3O4) nano-particles in an oxidative co-precipitation method, in comparison to the case without magnetic induction. The XRD results show that a weakly magnetic induction below 220 Gs could accelerate the phase transformation from goethite (α-FeOOH) to magnetite (Fe3O4), and affect the crystal structure, the particle size/morphology and magnetic response of the magnetite nano-particles synthesized. In addition, a higher concentration of the FeCl2 solution in the synthesis reaction led to finer particles, both with and without magnetic induction.
基金Supported by the Fundamental Research Funds from the Central Universities of China, the Natural Scientific Research Innovation Foundation of Harbin Institute of Technology, China(Nos.HIT.IBRSEM.2009.003, HIT.ICRST.2010012), the Ministry of Science and Technology International Cooperation Project, China(No.2012DFR30220) and the National Natural Science Foundation of China(No. 514070467).
文摘Magnetic Fe3O4 nanoparticles were synthesized via the coprecipitation of ferrous and ferric ion. The morphology and magnetic properties of the magnetic Fe3O4 nanoparticles were investigated by transmission electron microscopy(TEM) and superconducting quantum interference device. Furthermore, the Fe3O4-porphyrin nanocompo- site particles(FeOPNCPs) are prepared with Fe3O4 and porphyrin by sol-gel method. The patterns of FeOPNCPs were also characterized by means of scanning electron microscopy(SEM) and TEM. The optical and magnetic properties of FeOPNCPs were investigated on a UV-Vis spectrophotometer, a fluorescence spectrophotometer and a supercon- ducting quantum interference device. These experimental results show that FeOPNCPs not only possess optical features of porphvrin but also retain the superoaramagnetic features of Fe3O4 nanoparticles.