A simple and facile synthetic methodology for fabricating the regenerated silk fibroin (RSF)-based hydrogel which consisted of the in situ generated magnetic ferriferous oxide (Fe304) was developed. Using the co-p...A simple and facile synthetic methodology for fabricating the regenerated silk fibroin (RSF)-based hydrogel which consisted of the in situ generated magnetic ferriferous oxide (Fe304) was developed. Using the co-precipitation of Fe2+ and Fe3+ within the RSF-based hydrogel with 90% RSF and 10% HPMC (hydroxypropyl methyl cellulose), the as-prepared RSF/Fe304 hydrogel not only showed high strength of saturation magnetization, but also exhibited excellent catalytic activities. For example, with the assistant of 3,3',5,5'-tetramethylbenzidine (TMB), the RSF/Fe304 hydrogel could detect H202 at a concentration as low as 1 x 10-6 mol.L-1 In addition, the catalytic activities were able to be maintained for a long term under various conditions. These findings suggest that the RSF-based materials can be endowed with interesting properties, and have great potential for the applications in the fields of biotechnology and environmental chemistry.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21574024)
文摘A simple and facile synthetic methodology for fabricating the regenerated silk fibroin (RSF)-based hydrogel which consisted of the in situ generated magnetic ferriferous oxide (Fe304) was developed. Using the co-precipitation of Fe2+ and Fe3+ within the RSF-based hydrogel with 90% RSF and 10% HPMC (hydroxypropyl methyl cellulose), the as-prepared RSF/Fe304 hydrogel not only showed high strength of saturation magnetization, but also exhibited excellent catalytic activities. For example, with the assistant of 3,3',5,5'-tetramethylbenzidine (TMB), the RSF/Fe304 hydrogel could detect H202 at a concentration as low as 1 x 10-6 mol.L-1 In addition, the catalytic activities were able to be maintained for a long term under various conditions. These findings suggest that the RSF-based materials can be endowed with interesting properties, and have great potential for the applications in the fields of biotechnology and environmental chemistry.