The HT-7U super-conducting tokamak is a full super-conducting magnetically confined fusion device, It mainly consists of super-conducting toroidal field (TF) coils and super conducting poloidal field (PF) coils. This...The HT-7U super-conducting tokamak is a full super-conducting magnetically confined fusion device, It mainly consists of super-conducting toroidal field (TF) coils and super conducting poloidal field (PF) coils. This paper describes the distribution of magnetic field, ripple and electromagnetic loads of TF system, some results are necessary to analyze and calculate the stresses and deformation on TF system by a finite element method. Meanwhile, in this paper, the main scope of the calculation is carried out for the case of constant magnetic field on conductor of the TF coil winding in order to provide electromagnet parameters for the quench analysis of Cable-in-Conduit Conductor (CICC) of TF system in HT-7U.展开更多
In this paper, the mechanical strength of the toroidal field (TF) magnets of HT-7U with the electromagnetic force in different magnetic fields is emphatically analyzed by means of finite element method. The model and ...In this paper, the mechanical strength of the toroidal field (TF) magnets of HT-7U with the electromagnetic force in different magnetic fields is emphatically analyzed by means of finite element method. The model and feasible method of computation are put forward. Some important conclusions are made available for reference in the design and construction of TF for HT-7U.展开更多
The magnetic induction and its ripple due to reconstructive toroidal coils are calculated. The field ripple is so small that the influence of ripple can be omitted for the plasma discharge.
The left-hand side of the auroral hiss emission observed by Galileo has a frequency time profile shaped very similar to the funnel shape observed in the Earth's auroral region. This close similarity indicates that we...The left-hand side of the auroral hiss emission observed by Galileo has a frequency time profile shaped very similar to the funnel shape observed in the Earth's auroral region. This close similarity indicates that we can use the theory of whistler- mode propagation near the resonance cone to locate the emission source. The general characteristics of the whistler mode are discussed. Then the position of the emission source is investigated using a geometrical method that takes into account the trajectory of Galileo. Initially a point source is assumed. Then the possibility of a sheet source aligned along the magnetic field lines which tigated. Both types of sources show that the close to the surface of Io. are tangent to the surface of Io is inves- whistler mode radiation originates veryclose to the surface of Io.展开更多
Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermo- dynamic equi...Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermo- dynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with mul- tiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).展开更多
文摘The HT-7U super-conducting tokamak is a full super-conducting magnetically confined fusion device, It mainly consists of super-conducting toroidal field (TF) coils and super conducting poloidal field (PF) coils. This paper describes the distribution of magnetic field, ripple and electromagnetic loads of TF system, some results are necessary to analyze and calculate the stresses and deformation on TF system by a finite element method. Meanwhile, in this paper, the main scope of the calculation is carried out for the case of constant magnetic field on conductor of the TF coil winding in order to provide electromagnet parameters for the quench analysis of Cable-in-Conduit Conductor (CICC) of TF system in HT-7U.
文摘In this paper, the mechanical strength of the toroidal field (TF) magnets of HT-7U with the electromagnetic force in different magnetic fields is emphatically analyzed by means of finite element method. The model and feasible method of computation are put forward. Some important conclusions are made available for reference in the design and construction of TF for HT-7U.
文摘The magnetic induction and its ripple due to reconstructive toroidal coils are calculated. The field ripple is so small that the influence of ripple can be omitted for the plasma discharge.
文摘The left-hand side of the auroral hiss emission observed by Galileo has a frequency time profile shaped very similar to the funnel shape observed in the Earth's auroral region. This close similarity indicates that we can use the theory of whistler- mode propagation near the resonance cone to locate the emission source. The general characteristics of the whistler mode are discussed. Then the position of the emission source is investigated using a geometrical method that takes into account the trajectory of Galileo. Initially a point source is assumed. Then the possibility of a sheet source aligned along the magnetic field lines which tigated. Both types of sources show that the close to the surface of Io. are tangent to the surface of Io is inves- whistler mode radiation originates veryclose to the surface of Io.
基金funded by the Key Laboratory of Solar Activity of Chinese Academy of Sciences and the National Science Foundationsupported by the National Natural Science Foundation of China (Grant Nos. 11178005 and 11427901)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB09040200)
文摘Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermo- dynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with mul- tiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).