In the traditional pipeline magnetic flux leakage(MFL)detection technology,circumferential or axial excitation is mainly used to excite the magnetic field of defects.However,the domestic and foreign pipeline detection...In the traditional pipeline magnetic flux leakage(MFL)detection technology,circumferential or axial excitation is mainly used to excite the magnetic field of defects.However,the domestic and foreign pipeline detection devices currently in operation are mainly axial excitation MFL detection tools,in which circumferential cracks can be clearly identified,but the detection sensitivity of axial cracks is not high,thus forming a detection blind zone.Therefore,a composite excitation multi-extension direction defect MFL detection method is proposed,which can realize the simultaneous detection of axial and circumferential defects.On the basis of the electromagnetic theory Maxwell equation and Biot Savart law,a mathematical model of circumferential and axial magnetization is firstly established.Then finite element simulation software is used to establish a model of a new type of magnetic flux leakage detection device,and a simulation analysis of crack detection in multiple extension directions is carried out.Finally,under the conditions of the relationship model between the change rate of leakage magnetic field and external excitation intensity under unsaturated magnetization and the multi-stage coil magnetization model,the sample vehicle towing experiment is carried out.The paper aims to analyze the feasibility and effectiveness of the new magnetic flux leakage detection device for detecting defects in different extension directions.Based on the final experimental results,the new composite excitation multi extension direction leakage magnetic field detector has a good detection effect for defects in the axial and circumferential extension directions.展开更多
Magnetic flux leakage(MFL)testing technology has the advantages of simple principle,easy engineering implementation and low requirements on the surface of the detected workpiece.Therefore,it has been one of the resear...Magnetic flux leakage(MFL)testing technology has the advantages of simple principle,easy engineering implementation and low requirements on the surface of the detected workpiece.Therefore,it has been one of the research hotspots in the field of non-destructive testing(NDT)and widely used for testing long distance pipelines.This paper presents the development of MFL tesing technology from the aspects of basic theory,influencing factors,magnetization technology,signal processing,etc.The problems to be solved and the future development are summarized,which can provide reference for the research and system development of MFL testing technology.展开更多
Wire ropes,employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue.The extent of damage and the carrying capacity of ropes are closely related to the...Wire ropes,employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue.The extent of damage and the carrying capacity of ropes are closely related to the sense of safety by staff and equipments.Magnetic flux leakage detection method(MFL),as an effective method,is these days widely used in detection of broken strands of wire ropes.In order to improve the accuracy of detection of flaws in wire ropes by magnetic flux leakage(MFL),the effect of the distance between a sensor and the surface of a wire rope(i.e.,lift-off) on detection by magnetic flux leakage was in-vestigated.An analysis of the main principles for the choice of lift-off is described by us and a new method that improves the structure of the detector is proposed from the point of view of the design of a magnetic circuit,to restrain the impact of fluctuations of sensor lift-off.The effect of this kind of method is validated by simulation and computation.The results show that the detection sensitivity is markedly increased by this method.Furthermore,the signal-to-noise ratio(SNR) can be increased by over 28%.This method will lend itself to offer reliable scientific information to optimize the structure of excitation devices and improve the accuracy of MFL detection.展开更多
基金National Natural Science Foundation of China(No.51804267)State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1610)。
文摘In the traditional pipeline magnetic flux leakage(MFL)detection technology,circumferential or axial excitation is mainly used to excite the magnetic field of defects.However,the domestic and foreign pipeline detection devices currently in operation are mainly axial excitation MFL detection tools,in which circumferential cracks can be clearly identified,but the detection sensitivity of axial cracks is not high,thus forming a detection blind zone.Therefore,a composite excitation multi-extension direction defect MFL detection method is proposed,which can realize the simultaneous detection of axial and circumferential defects.On the basis of the electromagnetic theory Maxwell equation and Biot Savart law,a mathematical model of circumferential and axial magnetization is firstly established.Then finite element simulation software is used to establish a model of a new type of magnetic flux leakage detection device,and a simulation analysis of crack detection in multiple extension directions is carried out.Finally,under the conditions of the relationship model between the change rate of leakage magnetic field and external excitation intensity under unsaturated magnetization and the multi-stage coil magnetization model,the sample vehicle towing experiment is carried out.The paper aims to analyze the feasibility and effectiveness of the new magnetic flux leakage detection device for detecting defects in different extension directions.Based on the final experimental results,the new composite excitation multi extension direction leakage magnetic field detector has a good detection effect for defects in the axial and circumferential extension directions.
基金National Natural Science Foundation of China(No.51804267)Applied Basic Research Project of Sichuan Province(No.2017JY0162)。
文摘Magnetic flux leakage(MFL)testing technology has the advantages of simple principle,easy engineering implementation and low requirements on the surface of the detected workpiece.Therefore,it has been one of the research hotspots in the field of non-destructive testing(NDT)and widely used for testing long distance pipelines.This paper presents the development of MFL tesing technology from the aspects of basic theory,influencing factors,magnetization technology,signal processing,etc.The problems to be solved and the future development are summarized,which can provide reference for the research and system development of MFL testing technology.
文摘Wire ropes,employed extensively in coal mine hoists and transportation systems are subject to damage due to wear,corrosion and fatigue.The extent of damage and the carrying capacity of ropes are closely related to the sense of safety by staff and equipments.Magnetic flux leakage detection method(MFL),as an effective method,is these days widely used in detection of broken strands of wire ropes.In order to improve the accuracy of detection of flaws in wire ropes by magnetic flux leakage(MFL),the effect of the distance between a sensor and the surface of a wire rope(i.e.,lift-off) on detection by magnetic flux leakage was in-vestigated.An analysis of the main principles for the choice of lift-off is described by us and a new method that improves the structure of the detector is proposed from the point of view of the design of a magnetic circuit,to restrain the impact of fluctuations of sensor lift-off.The effect of this kind of method is validated by simulation and computation.The results show that the detection sensitivity is markedly increased by this method.Furthermore,the signal-to-noise ratio(SNR) can be increased by over 28%.This method will lend itself to offer reliable scientific information to optimize the structure of excitation devices and improve the accuracy of MFL detection.