In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The struc...In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island.The results show that the magnetic island can induce an upshift in the Alfvén continuum.Moreover,the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island.展开更多
The identification of the magnetic island structure in the HL-2A tokamak is presented. First, the perturbation current as a source for the perturbation flux can be determined by using Mirnov probe measurements. By sup...The identification of the magnetic island structure in the HL-2A tokamak is presented. First, the perturbation current as a source for the perturbation flux can be determined by using Mirnov probe measurements. By superposing the perturbation flux and the equilibrium flux reconnected by equilibrium fitting, the structure and the width of the magnetic islands can be estimated. The method has been used in the HL-2A experiments.展开更多
A peculiar first orbit loss type was found apart from the normal ones when we use ORBIT code to simulate fast ion orbits in the EAST tokamak. Fast ion orbits were studied in the presence of toroidal field (TF) rippl...A peculiar first orbit loss type was found apart from the normal ones when we use ORBIT code to simulate fast ion orbits in the EAST tokamak. Fast ion orbits were studied in the presence of toroidal field (TF) ripple and magnetohydro- dynamic (MHD) perturbations. We analyzed the properties of the drifted orbits in detail and compared their differences, finding that the combined effects of ripple and magnetic islands are much greater than the effects of either one of them alone. Then we investigated the orbitdeviations as a function of pitch angle in different radial positions. The modeling results demonstrate that the loss of trapped particles is mainly caused by the ripple, while MHD'perturbation mainly plays an important role in the passing particles. Furthermore we modeled the loss rate using different equilibriums. Results prove that a higher beta can indeed improve the confinement of fast ions, while a little change in the q profile can make the topologies of magnetic islands become quite different and results in quite different total particle losses.展开更多
A real-time magnetic island reconstruction(MIR)system based on PCI express platform for HL-2 A tokamak is introduced.The front-end analog circuit and high performance analog-to-digital converters complete high-precisi...A real-time magnetic island reconstruction(MIR)system based on PCI express platform for HL-2 A tokamak is introduced.The front-end analog circuit and high performance analog-to-digital converters complete high-precision synchronous sampling of 18 channel Mirnov signals,and the application of PCIe platform and direct memory access technology enables high speed data transmission between graphics processing unit and field programmable gate array(FPGA).FPGA,as a mainstream high speed parallelizable computing tool,was used to implement the MIR algorithm,while a parameter table is established in an external double data rate SDRAM to improve the computational efficiency.The software of the MIR system is developed with Compute Unified Device Architecture 8.0 in Centos 6 system,which mainly realizes driver development,data transmission,network communication,parameter calculation and system control.This system has been tested in HL-2 A plasma discharge experiment,and the reconstructed magnetic island structure can achieve a spatial resolution of 1.02 cm while the time resolution can reach 2 ms.展开更多
The magnetic merging process related to pairwise magnetic islands coalescence is investigated by two-dimensional particle-in-cell simulations with a guide field.Owing to the force of attraction between parallel curren...The magnetic merging process related to pairwise magnetic islands coalescence is investigated by two-dimensional particle-in-cell simulations with a guide field.Owing to the force of attraction between parallel currents within the initial magnetic islands,the magnetic islands begin to approach each other and merge into one big island.We find that this newly formed island is unstable and can be divided into two small magnetic islands spontaneously.Lastly,these two small islands merge again.We follow the time evolution of this process,in which the contributions of three mechanisms of electron acceleration at different stages,including the Fermi,parallel electric field,and betatron mechanisms,are studied with the guide center theory.展开更多
The effect of externally applied resonant magnetic perturbation(RMP)on carbon impurity behavior is investigated in the J-TEXT tokamak.It is found that the m/n=3/1 islands have an impurity screening effect,which become...The effect of externally applied resonant magnetic perturbation(RMP)on carbon impurity behavior is investigated in the J-TEXT tokamak.It is found that the m/n=3/1 islands have an impurity screening effect,which becomes obvious while the edge magnetic island is generated via RMP field penetration.The impurity screening effect shows a dependence on the RMP phase with the field penetration,which is strongest if the O point of the magnetic island is near the low-field-side(LFS)limiter plate.By combining a methane injection experimental study and STRAHL impurity transport analysis,we found that the variation of the impurity transport dominates the impurity screening effect.The impurity diffusion at the inner plasma region(r/a<0.8)is enhanced with a significant increase in outward convection velocity at the edge region in the case of the magnetic island’s O point near the LFS limiter plate.The impurity transport coefficient varies by a much lower level for the case with the magnetic island’s X point near the LFS limiter plate.The interaction of the magnetic island and the LFS limiter plate is thought to contribute to the impurity transport variation with the dependence on the RMP phase.A possible reason is the interaction between the magnetic island and the LFS limiter.展开更多
A simple and direct theoretical method has been proposed to investigate the so- called ion-banana-orbit-width (IBW) effect on the bootstrap current in the region of magnetic islands generated by the neoclassical tea...A simple and direct theoretical method has been proposed to investigate the so- called ion-banana-orbit-width (IBW) effect on the bootstrap current in the region of magnetic islands generated by the neoclassical tearing mode (NTM). The result shows that, when the IBW approaches the island width, the (ion) bootstrap current can be partly restored inside the island while the pressure profile is flattened. This can lead to the reduction of the bootstrap current drive on the NTM. The strength of the IBW effect on the NTM is related to the safety factor and the inverse aspect ratio on the rational surface.展开更多
A 16-channel electron cyclotron emission (ECE) radiometer has been employed to observe the (m, n) = (2, 1) magnetic island structure on HT-7 tokamak, where m and n represent the poloidal and toroidal mode number...A 16-channel electron cyclotron emission (ECE) radiometer has been employed to observe the (m, n) = (2, 1) magnetic island structure on HT-7 tokamak, where m and n represent the poloidal and toroidal mode number respectively. The results indicate that the island width is about 7 cm when the magnetic island is saturated during the m/n = 2/1 mode. The location of resonance surface can be determined by plotting the contour of ECE relative fluctuation. This method could be applied to the HT-7 and EAST campaigns in the future for the research of neoclassical tearing modes (NTMs).展开更多
The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that ...The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.展开更多
The formation of magnetic islands within plasmas confined magnetically within the tori has significant influence upon their confinement and stability. To obtain an experimental insight into the formation and dynamics ...The formation of magnetic islands within plasmas confined magnetically within the tori has significant influence upon their confinement and stability. To obtain an experimental insight into the formation and dynamics of such island structures we employed a fast framing camera viewing the plasma tangentially in the toroidal direction. The toroidal viewing direction gives the advantage in that the islands are viewed almost tangentially and this greatly facilitates the reconstruction of the local data from the line integrated ones. We discuss an effective method to do inversion. To study the fluctuations seen in the video images we perform a singular value decomposition, and then we use a truncated least square method to infer their pictures in space.展开更多
The implementation of magnetic islands in gyrokinetic simulation has been verified in the gyrokinetic toroidal code(GTC).The ion and electron density profiles become partially flattened inside the islands.The densit...The implementation of magnetic islands in gyrokinetic simulation has been verified in the gyrokinetic toroidal code(GTC).The ion and electron density profiles become partially flattened inside the islands.The density profile at the low field side is less flattened than that at the high field side due to toroidally trapped particles in the low field side,which do not move along the perturbed magnetic field lines.When the fraction of trapped particles decreases,the density profile at the low field becomes more flattened.展开更多
Accurate detection of a magnetic island in real time is one of the important issues for the tearing mode(TM) and neoclassical tearing mode(NTM) control.This paper presents a real-time detection system for the magn...Accurate detection of a magnetic island in real time is one of the important issues for the tearing mode(TM) and neoclassical tearing mode(NTM) control.This paper presents a real-time detection system for the magnetic island of NTM control in the EAST Plasma Control System(PCS).Diagnosis is based on magnetic periodic perturbation and electron temperature fluctuation caused by the magnetic island.Therefore,a Mirnov measurement has been selected to calculate the island's parameters,such as island width,frequency of island rotation,and toroidal number.The electron cyclotron emission(ECE) system can detect the island position,which is calculated by two fast detection algorithms called correlation analysis and Hilbert transform.For future NTM control,real-time equilibrium reconstruction(rt-EFIT) is needed to locate the rational q-surface where the island is detected.This fast detection system is able to detect an island within 3 ms.It can be integrated into PCS to provide effective parameters of the island for NTM control by using EC resonance heating(ECRH) in the next experiment of EAST.展开更多
Ion temperature gradient(ITG)-driven turbulence with embedded static magnetic islands is simulated by utilizing a gyrokinetic theory-based global turbulence transport code(GKNET)in this work.Different from the traditi...Ion temperature gradient(ITG)-driven turbulence with embedded static magnetic islands is simulated by utilizing a gyrokinetic theory-based global turbulence transport code(GKNET)in this work.Different from the traditional equilibrium circular magnetic-surface average(EMSA)method,an advanced algorithm that calculates the perturbed magnetic-surface average(PMSA)of the electric potential has been developed to precisely deal with the zonal flow component in a non-circular magnetic surface perturbed by magnetic islands.Simulations show that the electric potential vortex structure inside islands induced by the magnetic islands is usually of odd parity when using the EMSA method.It is found that the odd symmetry vortex can transfer into an even one after a steep zonal flow gradient,i.e.the flow shear has been built in the vicinity of the magnetic islands by adopting the PMSA algorithm.The phase of the potential vortex in the poloidal cross section is coupled with the zonal flow shear.Such an electric potential vortex mode may be of essential importance in wide topics,such as the turbulence spreading across magnetic islands,neoclassical tearing mode physics,and also the interaction dynamics between the micro-turbulence and MHD activities.展开更多
Solutions of Grad-Shafranov (CS) equation with Reversed Current Density (RCD) profiles present mag- netic islands when the magnetic flux is explicitly dependent on the poloidal angle. In this work it is shown that...Solutions of Grad-Shafranov (CS) equation with Reversed Current Density (RCD) profiles present mag- netic islands when the magnetic flux is explicitly dependent on the poloidal angle. In this work it is shown that a typical cylindrical (large aspect-ratio) RCD equilibrium configuration perturbed by the magnetic field of a circular loop (simulating a divertor) is capable of generate magnetic islands, due to the poloidal symmetry break of the GS equilibrium solution.展开更多
Characteristics of the magnetic-island-induced ion temperature gradient (MITG) mode are studied through gyrofluid simulations in the slab geometry, focusing on the effects of Landau damping, equilibrium magnetic she...Characteristics of the magnetic-island-induced ion temperature gradient (MITG) mode are studied through gyrofluid simulations in the slab geometry, focusing on the effects of Landau damping, equilibrium magnetic shear (EMS), and pressure flattening. It is shown that the magnetic island may enhance the Landau damping of the system by inducing the radial magnetic field. Moreover, the radial eigenmode numbers of most MITG poloidal harmonics are increased by the magnetic island so that the MITG mode is destabilized in the low EMS regime. In addition, the pressure profile flattening effect inside a magnetic island hardly affects the growth of the whole MITG mode, while it has different local effects near the O-point and the X-point regions. In comparison with the non-zero-order perturbations, only the quasi-linear flattening effect due to the zonal pressure is the effective component to impact the growth rate of the mode.展开更多
The stability(or instability)of finite sized magnetic island could play a significant role in disruption avoidance or disruption mitigation dynamics.Especially,various current and pressure profile modifications,such a...The stability(or instability)of finite sized magnetic island could play a significant role in disruption avoidance or disruption mitigation dynamics.Especially,various current and pressure profile modifications,such as the current drive and heating caused by electron cyclotron wave,or the radiative cooling and current expulsion caused by the shattered pellet injection could be applied within the island to modify its stability,thus changing the ensuing dynamics.In this study,we calculate the mode structure modification caused by such profile changes within the island using the perturbed equilibrium approach,thus obtain the change of stability criterion Δ′ and assess the corresponding quasi-linear island stability.The positive helical current perturbation is found to always stabilize the island,while the negative one is found to do the opposite,in agreement with previous results.The pressure bump or hole within the island has a more complicated stability impact.In the small island regime,its contribution is monotonic,with pressure bump that tends to stabilize the island while pressure hole destabilizes it.This effect is relatively weak,though,due to the cancellation of the pressure term’s odd parity contribution in the second derivatives of the mode structure.In the large island regime,such cancellation is broken due to the island asymmetry,and the pressure contribution to stability is manifested,which is non-monotonic.The stability analysis in this paper helps to more accurately clarify the expected island response in the presence of profile modifications caused by disruption avoidance or mitigation systems.展开更多
A method for the identification and analysis of magnetic islands is presented based on the calculation of the perturbative current and magnetic field in plasmas. A cylindrical approximation is adopted and the toroidal...A method for the identification and analysis of magnetic islands is presented based on the calculation of the perturbative current and magnetic field in plasmas. A cylindrical approximation is adopted and the toroidal effect on plasma equilibrium is also included. This method has been used on the HL-2A tokamak for analysing the magnetic island structures.展开更多
In the Large Helical Device (LHD), two different divertor configurations, i.e. helical divertor (HD) and local island divertor (LID), are utilized to control the edge plasma. The HD with two X-points is an intri...In the Large Helical Device (LHD), two different divertor configurations, i.e. helical divertor (HD) and local island divertor (LID), are utilized to control the edge plasma. The HD with two X-points is an intrinsic divertor for heliotron devices, accompanied with a relatively thick ergodic layer outside the confinement region. Edge and divertor plasma behavior from low density to high density regimes is presented, referring to the divertor detachment. The effect of the ergodic layer on the edge transport is also discussed. On the other hand, the LID is an advanced divertor concept which realizes a high pumping efficiency by the combination of an externally induced magnetic island and a closed pumping system. Experimental results to confirm the fundamental divertor performance of the LID are presented.展开更多
The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-TU) when the equilibrium field with a monotonic q-profile is p...The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-TU) when the equilibrium field with a monotonic q-profile is perturbed by a helical magnetic field. We find that a single mode (m, n) helical perturbation can cause the formation of islands on rational surfaces with q=m/n and q=(m±1,±2,±3,...)/n due to the toroidicity and plasma shape (i.e. elongation and triangularity), while there are many undestroyed magnetic surfaces called Kolmogorov-Arnold-Moser (KAM) barriers on irrational surfaces. The islands on the same rational surface do not have the same size. When the ratio between the perturbing magnetic field Br(r) and the toroidal magnetic field amplitude Bφ0 is large enough, the magnetic island chains on different rational surfaces will overlap and chaotic orbits appear in the overlapping area, and the magnetic field becomes stochastic. It is remarkable that the stochastic layer appears first in the plasma edge region.展开更多
Investigation of neoclassical tearing mode and its suppression by electron cyclotron current drive(ECCD)has been carried out in HL-2 M tokamak.The current driving capability of the electron cyclotron wave is evaluated...Investigation of neoclassical tearing mode and its suppression by electron cyclotron current drive(ECCD)has been carried out in HL-2 M tokamak.The current driving capability of the electron cyclotron wave is evaluated.It is found that the deposition location can be effectively controlled by changing the poloidal angle.The validation of electron cyclotron wave heating and current driving has been demonstrated for the upper launcher port.We show that 3.0 MW and2.5 MW modulated ECCD can completely stabilize(2,1)and(3,2)NTMs,respectively.The non-modulated ECCD,radial misalignment as well as current profile broadening have deleterious effect on the NTM stabilization.The time required for suppression of(3,2)mode is shorter than that required for the suppression of(2,1)mode.Moreover,the time needed for complete stabilization at different initial island width has been quantitatively presented and analyzed.展开更多
基金supported by the ITER Project of Ministry of Science and Technology(No.2022YFE03080002)National Natural Science Foundation of China(Nos.11605088 and 12005100)+5 种基金the Key Scientific Research Program of Education Department of Hunan Province(Nos.20A417 and 20A439)the National Magnetic Confinement Fusion Science Program of China(No.2015GB110002)the Hunan Provincial Natural Science Foundation of China(No.2017JJ3268)the International Cooperation Base Project of Hunan Province of China(No.2018WK4009)the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang(No.2018KJ108)the PhD Start-Up Fund of University of South China(No.2017XQD08)。
文摘In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island.The results show that the magnetic island can induce an upshift in the Alfvén continuum.Moreover,the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10775045 and 10935004)
文摘The identification of the magnetic island structure in the HL-2A tokamak is presented. First, the perturbation current as a source for the perturbation flux can be determined by using Mirnov probe measurements. By superposing the perturbation flux and the equilibrium flux reconnected by equilibrium fitting, the structure and the width of the magnetic islands can be estimated. The method has been used in the HL-2A experiments.
基金Project supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(NSFC Grant No.11261140328)
文摘A peculiar first orbit loss type was found apart from the normal ones when we use ORBIT code to simulate fast ion orbits in the EAST tokamak. Fast ion orbits were studied in the presence of toroidal field (TF) ripple and magnetohydro- dynamic (MHD) perturbations. We analyzed the properties of the drifted orbits in detail and compared their differences, finding that the combined effects of ripple and magnetic islands are much greater than the effects of either one of them alone. Then we investigated the orbitdeviations as a function of pitch angle in different radial positions. The modeling results demonstrate that the loss of trapped particles is mainly caused by the ripple, while MHD'perturbation mainly plays an important role in the passing particles. Furthermore we modeled the loss rate using different equilibriums. Results prove that a higher beta can indeed improve the confinement of fast ions, while a little change in the q profile can make the topologies of magnetic islands become quite different and results in quite different total particle losses.
基金supported by National Natural Science Foundation of China(No.11575184)。
文摘A real-time magnetic island reconstruction(MIR)system based on PCI express platform for HL-2 A tokamak is introduced.The front-end analog circuit and high performance analog-to-digital converters complete high-precision synchronous sampling of 18 channel Mirnov signals,and the application of PCIe platform and direct memory access technology enables high speed data transmission between graphics processing unit and field programmable gate array(FPGA).FPGA,as a mainstream high speed parallelizable computing tool,was used to implement the MIR algorithm,while a parameter table is established in an external double data rate SDRAM to improve the computational efficiency.The software of the MIR system is developed with Compute Unified Device Architecture 8.0 in Centos 6 system,which mainly realizes driver development,data transmission,network communication,parameter calculation and system control.This system has been tested in HL-2 A plasma discharge experiment,and the reconstructed magnetic island structure can achieve a spatial resolution of 1.02 cm while the time resolution can reach 2 ms.
基金supported by the National Natural Science Foundation of China(Grant Nos.41804159 and 41774169)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC010)。
文摘The magnetic merging process related to pairwise magnetic islands coalescence is investigated by two-dimensional particle-in-cell simulations with a guide field.Owing to the force of attraction between parallel currents within the initial magnetic islands,the magnetic islands begin to approach each other and merge into one big island.We find that this newly formed island is unstable and can be divided into two small magnetic islands spontaneously.Lastly,these two small islands merge again.We follow the time evolution of this process,in which the contributions of three mechanisms of electron acceleration at different stages,including the Fermi,parallel electric field,and betatron mechanisms,are studied with the guide center theory.
基金supported by the National Key R&D Program of China(Nos.2017YFE0301301 and 2017YFE0302000)National Natural Science Foundation of China(Nos.11805135 and 11805131)the Ministry of Science and Technology(No.2015GB103001).
文摘The effect of externally applied resonant magnetic perturbation(RMP)on carbon impurity behavior is investigated in the J-TEXT tokamak.It is found that the m/n=3/1 islands have an impurity screening effect,which becomes obvious while the edge magnetic island is generated via RMP field penetration.The impurity screening effect shows a dependence on the RMP phase with the field penetration,which is strongest if the O point of the magnetic island is near the low-field-side(LFS)limiter plate.By combining a methane injection experimental study and STRAHL impurity transport analysis,we found that the variation of the impurity transport dominates the impurity screening effect.The impurity diffusion at the inner plasma region(r/a<0.8)is enhanced with a significant increase in outward convection velocity at the edge region in the case of the magnetic island’s O point near the LFS limiter plate.The impurity transport coefficient varies by a much lower level for the case with the magnetic island’s X point near the LFS limiter plate.The interaction of the magnetic island and the LFS limiter plate is thought to contribute to the impurity transport variation with the dependence on the RMP phase.A possible reason is the interaction between the magnetic island and the LFS limiter.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2011GB105002 and 2010GB106006)National Natural Science Foundation of China(No.11175057)
文摘A simple and direct theoretical method has been proposed to investigate the so- called ion-banana-orbit-width (IBW) effect on the bootstrap current in the region of magnetic islands generated by the neoclassical tearing mode (NTM). The result shows that, when the IBW approaches the island width, the (ion) bootstrap current can be partly restored inside the island while the pressure profile is flattened. This can lead to the reduction of the bootstrap current drive on the NTM. The strength of the IBW effect on the NTM is related to the safety factor and the inverse aspect ratio on the rational surface.
基金supported by the National Magnetic Confinement Fusion Science Program of China (Nos.2010GB106000 and 2010GB106001)
文摘A 16-channel electron cyclotron emission (ECE) radiometer has been employed to observe the (m, n) = (2, 1) magnetic island structure on HT-7 tokamak, where m and n represent the poloidal and toroidal mode number respectively. The results indicate that the island width is about 7 cm when the magnetic island is saturated during the m/n = 2/1 mode. The location of resonance surface can be determined by plotting the contour of ECE relative fluctuation. This method could be applied to the HT-7 and EAST campaigns in the future for the research of neoclassical tearing modes (NTMs).
基金State University of Campinas and CNPq (brazili anagency) for financial support
文摘The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.
文摘The formation of magnetic islands within plasmas confined magnetically within the tori has significant influence upon their confinement and stability. To obtain an experimental insight into the formation and dynamics of such island structures we employed a fast framing camera viewing the plasma tangentially in the toroidal direction. The toroidal viewing direction gives the advantage in that the islands are viewed almost tangentially and this greatly facilitates the reconstruction of the local data from the line integrated ones. We discuss an effective method to do inversion. To study the fluctuations seen in the video images we perform a singular value decomposition, and then we use a truncated least square method to infer their pictures in space.
基金supported by National Special Research Program of China for ITER(Nos.2013GB111000 and 2014GB107004)China Scholarship Council(No.2011601098)U.S.DOE Grants DE-SC0010416 and DE-FG02-07ER54916
文摘The implementation of magnetic islands in gyrokinetic simulation has been verified in the gyrokinetic toroidal code(GTC).The ion and electron density profiles become partially flattened inside the islands.The density profile at the low field side is less flattened than that at the high field side due to toroidally trapped particles in the low field side,which do not move along the perturbed magnetic field lines.When the fraction of trapped particles decreases,the density profile at the low field becomes more flattened.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB103000,2012GB103000,and2012GB103002)National Natural Science Foundation of China(No.11205200)
文摘Accurate detection of a magnetic island in real time is one of the important issues for the tearing mode(TM) and neoclassical tearing mode(NTM) control.This paper presents a real-time detection system for the magnetic island of NTM control in the EAST Plasma Control System(PCS).Diagnosis is based on magnetic periodic perturbation and electron temperature fluctuation caused by the magnetic island.Therefore,a Mirnov measurement has been selected to calculate the island's parameters,such as island width,frequency of island rotation,and toroidal number.The electron cyclotron emission(ECE) system can detect the island position,which is calculated by two fast detection algorithms called correlation analysis and Hilbert transform.For future NTM control,real-time equilibrium reconstruction(rt-EFIT) is needed to locate the rational q-surface where the island is detected.This fast detection system is able to detect an island within 3 ms.It can be integrated into PCS to provide effective parameters of the island for NTM control by using EC resonance heating(ECRH) in the next experiment of EAST.
基金partially supported by the National Key R&D Program of China(No.2019YFE0300002)by National Natural Science Foundation of China(Nos.U1967206 and 12275071)。
文摘Ion temperature gradient(ITG)-driven turbulence with embedded static magnetic islands is simulated by utilizing a gyrokinetic theory-based global turbulence transport code(GKNET)in this work.Different from the traditional equilibrium circular magnetic-surface average(EMSA)method,an advanced algorithm that calculates the perturbed magnetic-surface average(PMSA)of the electric potential has been developed to precisely deal with the zonal flow component in a non-circular magnetic surface perturbed by magnetic islands.Simulations show that the electric potential vortex structure inside islands induced by the magnetic islands is usually of odd parity when using the EMSA method.It is found that the odd symmetry vortex can transfer into an even one after a steep zonal flow gradient,i.e.the flow shear has been built in the vicinity of the magnetic islands by adopting the PMSA algorithm.The phase of the potential vortex in the poloidal cross section is coupled with the zonal flow shear.Such an electric potential vortex mode may be of essential importance in wide topics,such as the turbulence spreading across magnetic islands,neoclassical tearing mode physics,and also the interaction dynamics between the micro-turbulence and MHD activities.
文摘Solutions of Grad-Shafranov (CS) equation with Reversed Current Density (RCD) profiles present mag- netic islands when the magnetic flux is explicitly dependent on the poloidal angle. In this work it is shown that a typical cylindrical (large aspect-ratio) RCD equilibrium configuration perturbed by the magnetic field of a circular loop (simulating a divertor) is capable of generate magnetic islands, due to the poloidal symmetry break of the GS equilibrium solution.
基金supported by National Natural Science Foundation of China with Nos.11305027,11322549 and 11675038National Magnetic Confinement Fusion Science Program of China with No.2014GB124000partly supported by the Fundamental Research Funds for the Central Universities with Grant No.DUT15YQ103
文摘Characteristics of the magnetic-island-induced ion temperature gradient (MITG) mode are studied through gyrofluid simulations in the slab geometry, focusing on the effects of Landau damping, equilibrium magnetic shear (EMS), and pressure flattening. It is shown that the magnetic island may enhance the Landau damping of the system by inducing the radial magnetic field. Moreover, the radial eigenmode numbers of most MITG poloidal harmonics are increased by the magnetic island so that the MITG mode is destabilized in the low EMS regime. In addition, the pressure profile flattening effect inside a magnetic island hardly affects the growth of the whole MITG mode, while it has different local effects near the O-point and the X-point regions. In comparison with the non-zero-order perturbations, only the quasi-linear flattening effect due to the zonal pressure is the effective component to impact the growth rate of the mode.
基金Project supported by the National MCF Energy Research and Development Program of China (Grant No. 2019YFE03010001)the National Natural Science Foundation of China (Grant No. 11905004)
文摘The stability(or instability)of finite sized magnetic island could play a significant role in disruption avoidance or disruption mitigation dynamics.Especially,various current and pressure profile modifications,such as the current drive and heating caused by electron cyclotron wave,or the radiative cooling and current expulsion caused by the shattered pellet injection could be applied within the island to modify its stability,thus changing the ensuing dynamics.In this study,we calculate the mode structure modification caused by such profile changes within the island using the perturbed equilibrium approach,thus obtain the change of stability criterion Δ′ and assess the corresponding quasi-linear island stability.The positive helical current perturbation is found to always stabilize the island,while the negative one is found to do the opposite,in agreement with previous results.The pressure bump or hole within the island has a more complicated stability impact.In the small island regime,its contribution is monotonic,with pressure bump that tends to stabilize the island while pressure hole destabilizes it.This effect is relatively weak,though,due to the cancellation of the pressure term’s odd parity contribution in the second derivatives of the mode structure.In the large island regime,such cancellation is broken due to the island asymmetry,and the pressure contribution to stability is manifested,which is non-monotonic.The stability analysis in this paper helps to more accurately clarify the expected island response in the presence of profile modifications caused by disruption avoidance or mitigation systems.
文摘A method for the identification and analysis of magnetic islands is presented based on the calculation of the perturbative current and magnetic field in plasmas. A cylindrical approximation is adopted and the toroidal effect on plasma equilibrium is also included. This method has been used on the HL-2A tokamak for analysing the magnetic island structures.
基金supported by NIFS under Grant(No.NIFS05ULPP506)in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘In the Large Helical Device (LHD), two different divertor configurations, i.e. helical divertor (HD) and local island divertor (LID), are utilized to control the edge plasma. The HD with two X-points is an intrinsic divertor for heliotron devices, accompanied with a relatively thick ergodic layer outside the confinement region. Edge and divertor plasma behavior from low density to high density regimes is presented, referring to the divertor detachment. The effect of the ergodic layer on the edge transport is also discussed. On the other hand, the LID is an advanced divertor concept which realizes a high pumping efficiency by the combination of an externally induced magnetic island and a closed pumping system. Experimental results to confirm the fundamental divertor performance of the LID are presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10405030 and 10135020).
文摘The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-TU) when the equilibrium field with a monotonic q-profile is perturbed by a helical magnetic field. We find that a single mode (m, n) helical perturbation can cause the formation of islands on rational surfaces with q=m/n and q=(m±1,±2,±3,...)/n due to the toroidicity and plasma shape (i.e. elongation and triangularity), while there are many undestroyed magnetic surfaces called Kolmogorov-Arnold-Moser (KAM) barriers on irrational surfaces. The islands on the same rational surface do not have the same size. When the ratio between the perturbing magnetic field Br(r) and the toroidal magnetic field amplitude Bφ0 is large enough, the magnetic island chains on different rational surfaces will overlap and chaotic orbits appear in the overlapping area, and the magnetic field becomes stochastic. It is remarkable that the stochastic layer appears first in the plasma edge region.
基金the National Key Research and Development Program of China(Grant Nos.2018YFE0303102,2018YFE0301100,and2017YFE0301702)the National Natural Science Foundation of China(Grant Nos.11905109 and 11947238)+1 种基金U.S.DOE Sci DAC ISEP,users with Excellence Program(on EAST tokamak)of Hefei Science Center CAS under(Grant No.2021HSC-UE017)the Center for Computational Science and Engineering of Southern University of Science and Technology。
文摘Investigation of neoclassical tearing mode and its suppression by electron cyclotron current drive(ECCD)has been carried out in HL-2 M tokamak.The current driving capability of the electron cyclotron wave is evaluated.It is found that the deposition location can be effectively controlled by changing the poloidal angle.The validation of electron cyclotron wave heating and current driving has been demonstrated for the upper launcher port.We show that 3.0 MW and2.5 MW modulated ECCD can completely stabilize(2,1)and(3,2)NTMs,respectively.The non-modulated ECCD,radial misalignment as well as current profile broadening have deleterious effect on the NTM stabilization.The time required for suppression of(3,2)mode is shorter than that required for the suppression of(2,1)mode.Moreover,the time needed for complete stabilization at different initial island width has been quantitatively presented and analyzed.