Oxide heterointerface is a platform to create unprecedented two-dimensional electron gas, superconductivity and ferromagnetism, arising from a polar discontinuity at the interface. In particular, the ability to tune t...Oxide heterointerface is a platform to create unprecedented two-dimensional electron gas, superconductivity and ferromagnetism, arising from a polar discontinuity at the interface. In particular, the ability to tune these intriguing effects paves a way to elucidate their fundamental physics and to develop novel electronic/magnetic devices. In this work, we report for the first time that a ferroelectric polarization screening at SrTiO_(3)/PbTiO_(3) interface is able to drive an electronic construction of Ti atom, giving rise to room-temperature ferromagnetism. Surprisingly, such ferromagnetism can be switched to antiferromagnetism by applying a magnetic field, which is reversible. A coupling of itinerant electrons with local moments at interfacial Ti3d orbital was proposed to explain the magnetism. The localization of the itinerant electrons under a magnetic field is responsible for the suppression of magnetism. These findings provide new insights into interfacial magnetism and their control by magnetic field relevant interfacial electrons promising for device applications.展开更多
Exploring the novel structural phase of van der Waals(vdW) magnets would promote the development of spintronics.Here, through first-principles calculations, we report a novel monoclinic structure of vdW layered 1T-CrT...Exploring the novel structural phase of van der Waals(vdW) magnets would promote the development of spintronics.Here, through first-principles calculations, we report a novel monoclinic structure of vdW layered 1T-CrTe2, which is one of the popular vdW magnets normally exhibiting a trigonal structure. The new monoclinic phase emerges from a switchable magnetic state between ferromagnetism and antiferromagnetism through changing hole doping concentration, which suggests a practical approach to obtain such a structure. The results of phonon dispersion and energy analysis convince us that the monoclinic structure is a metastable phase even without hole doping. When the hole doping concentration increases,the stability analysis indicates the preference for a novel monoclinic phase rather than a conventional trigonal phase, and meanwhile, the magnetic properties are accordingly tuned. This work provides new insights into the phase engineering of the chalcogenide family and the electrical control of magnetism of vdW layered magnets.展开更多
We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagona...We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagonal structure(space group: P63/cm) and exhibit a successive complicated magnetic phase transition. The extensive magnetic phase transitions contribute to the broad temperature range of MCEs exhibiting in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds, with maximum magnetic entropy change(-ΔSM_(max)) and refrigeration capacity of 10.2 J·kg^(-1)·K^(-1), 356.3 J/kg and 11.5 J·kg^(-1)·K^(-1),393.3 J/kg under varying magnetic fields 0–5 T, respectively. Remarkably, the δTFWHMvalues(the temperature range corresponding to 1/2×|-ΔSM_(max)|) of Er5Si3Bx(x=0.3,0.6) compounds were up to 41.8 K and 39.6 K, respectively. Thus, the present work provides a potential magnetic refrigeration material with a broad temperature range MCEs for applications in cryogenic magnetic refrigerators.展开更多
Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH ins...Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH insulator with high Chern number is conducive to spintronic devices with lower energy consumption. Here, we find that monolayer Fe SIn is a good candidate for realizing the QAH phase;it exhibits a high magnetic transition temperature of 221 K and tunable C = ±2 with respect to magnetization orientation in the y–z plane. After the application of biaxial strain, the magnetic axis shifts from the x–y plane to the z direction, and the effect of the high C and ferromagnetic ground state on the stress is robust. Also, the effect of correlation U on C has been examined. These properties are rooted in the large size of the Fe atom that contributes to ferromagnetic kinetic exchange with neighboring Fe atoms. These findings demonstrate monolayer Fe SIn to be a major template for probing novel QAH devices at higher temperatures.展开更多
As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites re...As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites rely on the cubic/orthorhombic structures, while the hexagonal structure is much less studied. Here first-principles calculations are employed to investigate the magnetic and electronic structures of La-doped 4H-SrMnO_(3). By systematically analyzing the two kinds of La-doped positions, our calculations predict that the doped electron with lattice distortion would prefer to form polarons, which contribute to the local magnetic phase transition, nonzero net magnetization, and semiconducting behavior. In addition, the energy gap decreases gradually with increasing doping concentration, indicating a tendency of insulator–metal transition.展开更多
Anomalous thermal expansion,or other words,negative thermal expansion(NTE),resulting from the lattice contraction upon temperature increasing,has been an enduring topic for material science and engineering.The variati...Anomalous thermal expansion,or other words,negative thermal expansion(NTE),resulting from the lattice contraction upon temperature increasing,has been an enduring topic for material science and engineering.The variation of a lattice go with the temperature is straightly originated from its electronic structures and is inseparable from those physical properties.In the past several decades,many efforts have been made to searching new series of NTE compounds or control the thermal expansion performance in order to supply various demands of different extreme applications.These development of new NTE systems also dependences on the theoretical studies.Here,we carried out theoretical calculation on CrB_(2) and FeZr_(2) with anisotropic negative thermal expansion.Intriguingly,theoretical calculations reveal that the binding of either Cr-Cr pair or Fe-Fe pair is relatively small.The results reveal that the origin of NTE is the ordered magnetic state during the increasing of temperature.The localized electrons would prevent the lattice parameters increase with heating,which shows macroscopic NTE phenomenon.展开更多
We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1-xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferr...We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1-xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferromagnetic to paramagnetic states with large changes of magnetization are observed at room temperature. Further increasing the content of Mn (x = 0.11) gives rise to a single second-order magnetic transition. Interestingly, large low-field magnetic entropy changes with almost zero magnetic hysteresis are observed in these alloys. The effects of Mn/Co ratio on magnetic transition and magnetocaloric effects are discussed in this paper.展开更多
The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in det...The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in detail for LaFe11.4Al1.6Cx with x=0.1, All the LaFe11.4Al1.6Cx (x=0-0.8) compounds have the cubic NaZn13-type structure. The addition of carbon atoms brings about a considerable increase in the lattice parameter. The bulk expansion results in the change of phase transition temperature (Tc), Tc increases from 187K to 269 K with x varying from 0.1 to 0.8, Meanwhile an increase in the lattice parameter can also cause a change of the magnetic ground state from antiferromagnetic to ferromagnetic. Large magnetic entropy change IASI is found over a large temperature range around Tc and the refrigerant capacity is about 322J/kg for LaFe11.4Al1.6C0.1. The magnetic phase transition belongs in weakly first-order one for x=0.1.展开更多
We have studied the magnetic and magnetocaloric properties of the Er3Co compound, which undergoes ferromagnetic ordering below the Curie temperature Tc = 13 K. It is found by fitting the isothermal magnetization curve...We have studied the magnetic and magnetocaloric properties of the Er3Co compound, which undergoes ferromagnetic ordering below the Curie temperature Tc = 13 K. It is found by fitting the isothermal magnetization curves that the Landau model is appropriate to describe the Er3Co compound. The giant magnetocaloric effect (MCE) without hysteresis loss around Tc is found to result from the second-order ferromagnetic-to-paramagnetic transition. The max- imal value of magnetic entropy change is 24.5 J/kg.K with a refrigerant capacity (RC) value of 476 J/kg for a field change of 0-5 T. Large reversible MEC and RC indicate the potentiality of Er3Co as a candidate magnetic refrigerant at low temperatures.展开更多
The atomic geometry, structure stability, electronic and magnetic properties of VSe2 were systematically investigated based on the density functional theory(DFT). Varying from 3D to 2D four VSe2 structures, bulk 2H-...The atomic geometry, structure stability, electronic and magnetic properties of VSe2 were systematically investigated based on the density functional theory(DFT). Varying from 3D to 2D four VSe2 structures, bulk 2H-VSe2 and 1T-VSe2, monolayer H-VSe2 and T-VSe2 are all demonstrated as thermodynamically stable by lattice dynamic calculations. More interestingly, the phase transition temperature is dramatically different due to the lattice size. Finally, owing to different crystal structures, H-VSe2 is semimetallic whereas T-VSe2 is totally metallic and also they have different magnetic moments. Our main argument is that being exfoliated from bulk to monolayer, 2H-VSe2 transforms to T-VSe2, accompanied by both semimetallic-metallic transition and dramatic magnetic moment variation. Our calculations provide a novel structure phase transition and an efficient way to modulate the electronic structure and magnetic moment of layered VSe2, which suggests potential applications as high-performance functional nanomaterial.展开更多
Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural an...Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural and magnetic transitions and transform from ferro-magnetic martensitic phase to paramagnetic austenitic phase during heating. Under a field of 2 T, the maximum magnetic entropy change -Delta S-M of Ni55.2Mn18.6Ga26.15Gd0.05 alloy was 7.7 J/kg.K at 317 K during heating and 8.6 J/kg.K at 314 K during cooling while it was 11.8 J/kg.K at 317 K in Ni55.2Mn18.6Ga26.05Gd0.15 alloy during heating.展开更多
Composition and electron concentration dependence of transformation temperature in Ni2+x+y Mn1-xGa1-y, Ni2+x Mn1-x Ga alloys with first order magnetic transition were studied. For Ni2 + x + y Mn1- x Ga1-y alloys,...Composition and electron concentration dependence of transformation temperature in Ni2+x+y Mn1-xGa1-y, Ni2+x Mn1-x Ga alloys with first order magnetic transition were studied. For Ni2 + x + y Mn1- x Ga1-y alloys, martensitic transformation temperature TM increases and Curie temperature Tc decreases with the increase of electron concentration e/a, they intercept at e/a = 7.68. TM and Tc decrease when continue to increase electron concentration. While for Ni2+x Mn1-xGa alloys, they cross at e/a = 7. 635. Before their crossing, the change tendency with e/a is the same as Ni2+x+yMn1-xGa1-y alloys;, after their crossing, both TM and Tc increase slowly. The different relations between TM and Tc and e/a within two NiMnGa alloys show that TM and Tc depend not only on e/a, but also on composition.展开更多
The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase ...The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase transition at TC ~ 51 K.A large reversible MCE is observed around TC.The values of maximum magnetic entropy change(-△SxMma) reach 5.6 J·kg^-1·K-1 and 13.3 J·kg^-1·K-1 for the field change of 2 T and 7 T,respectively,with no obvious hysteresis loss in the vicinity of Curie temperature.The corresponding maximum adiabatic temperature changes(△Tadmax) are evaluated to be 2.1 K and 5.0 K.The magnetic transition and the origin of large MCE in EuCu1.75P2 are also discussed.展开更多
Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ~21% Cr, ,~6% Ni, and ~ 9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its c...Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ~21% Cr, ,~6% Ni, and ~ 9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its crystal structures and compressive behaviors are investigated simultaneously using the synchrotron angle-dispersive x-ray diffraction technique. The SS 21-6-9 undergoes a structural phase transition from fcc to hcp structure at ~ 12.8 GPa with neglectable volume collapse within the determination error under the quasi-hydrostatic environment. The hcp structure remains stable up to the highest pressure of 250 GPa in the present experiments. The antiferromagnetic-to-nonmagnetic state transition of hcp SS 21-6-9 with the changes of inconspicuous density and structure, is discovered at ~50 GPa, and revealed by the significant change in c/a ratio. The hcp SS-21-6-9 is compressive anisotropic: it is more compressive in the c-axis direction than in the a-axis direction. Both the equations of states (EOSs) of fcc and hcp SS 21-6-9, which are in accordance with those of fcc and hcp pure irons respectively, are also presented. Furthermore, the c/a ratio of hcp SS 21-6-9 at infinite compression, R∞, is consistent with the values of pure iron and Fe-10Ni alloy.展开更多
A phenomenological model based on phase separation between ferromagnetic metallic and paramagnetic insulating domains was applied to analyze the electrical transport and colossal magnetoresistance for mixed-valent man...A phenomenological model based on phase separation between ferromagnetic metallic and paramagnetic insulating domains was applied to analyze the electrical transport and colossal magnetoresistance for mixed-valent manganites of RE_(2/3)AE_(1/3)MnO_3. The results show that the model can yield results in agreement with experimental observations in these manganites. The present approach provides a simple picture to visualize the reason that the temperature dependence of resistance (with and without applied magnetic fields) in these compounds has the peculiar shape, without invoking any complicated concept.展开更多
Theoretical calculations of the energy levels and magnetic dipole transition parameters for the 1s^(2)2s^(2)2p^(3) and 1s^(2)2p^(5) configurations of nitrogen isoelectronic sequence with Z=21-30 are performed using mu...Theoretical calculations of the energy levels and magnetic dipole transition parameters for the 1s^(2)2s^(2)2p^(3) and 1s^(2)2p^(5) configurations of nitrogen isoelectronic sequence with Z=21-30 are performed using multi-congfiguration Dirac-Fock(MCDF)method.Based on the relativistic computational code GRASP2k compiled within the framework of MCDF method,the electron correlations,Breit interaction and QED effects are well treated in detail.The energy levels,line strengths and transition rates of magnetic dipole transition are obtained and compared with the experimental data avail-able.For most cases,good agreements are achieved and the relative differences of them are less than 0.114%,8.43% and 9.80%,respectively.The scaling laws of the fine structure splitting and transition rate are obtained on the isoelec-tronic sequence and the corresponding physical mechanisms are discussed.The data sets for tables are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00022.展开更多
We investigate magnetic ordering and electronic structures of Cr2MoO6under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electroni...We investigate magnetic ordering and electronic structures of Cr2MoO6under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electronic structures of Cr2MoO6. The insulating nature at the experimental crystal structure is produced, with a band gap of 1.04 eV, and the magnetic moment of the Cr atom is 2.50 μB, compared to an experimental value of about 2.47 μB. The calculated results show that an antiferromagnetic inter-bilayer coupling–ferromagnetic intra-bilayer coupling to a ferromagnetic inter-bilayer coupling–antiferromagnetic intra-bilayer coupling phase transition is produced with the pressure increasing. The magnetic phase transition is simultaneously accompanied by a semiconductor–metal phase transition. The magnetic phase transition can be explained by the Mo–O hybridization strength, and ferromagnetic coupling between two Cr atoms can be understood by empty Mo-d bands perturbing the nearest O-p orbital.展开更多
Our recent studies of the crystal structures, phase transitions, and magnetic properties of intermetallic compounds RsM4 (R = rare earths; M = Si, Ge) are reviewed briefly. First, crystal structures, phase relations...Our recent studies of the crystal structures, phase transitions, and magnetic properties of intermetallic compounds RsM4 (R = rare earths; M = Si, Ge) are reviewed briefly. First, crystal structures, phase relationships, and magnetic prop- erties of several 5:4 compounds, including Nd5 Si4-xGex, Pr5 Si4_xGex, Gds-xLaxGe4, La5 Si4, and Gd5 Sn4, are presented. In particular, the canted spin structures as well as the magnetic phase transitions in PrsSi2Ge2 and PrsGe4 investigated by neutron powder diffractions and small-angle neutron scattering are reviewed. Second, the crystal structures and magnetic properties of the most studied compounds Gds(Si,Ge)4 are summarized. The focus is on the parent compound GdsGe4, which is an amazing material exhibiting magnetic anisotropy, angular dependent spin-flop transition, metastable magnetic response, Griffiths-like phase, thermal effect under pulsed fields, antiferromagnetic and ferromagnetic resonances, pro- nounced effects of impurities, and high-field induced magnetic transitions.展开更多
Systematic calculations and assessments are performed for the magnetic dipole(M1)transition energies and rates between the ^(2)F^(o)_(5/2,7/2) levels in the ground configuration 4d104f along the Ag-like isoelectronic ...Systematic calculations and assessments are performed for the magnetic dipole(M1)transition energies and rates between the ^(2)F^(o)_(5/2,7/2) levels in the ground configuration 4d104f along the Ag-like isoelectronic sequence with 62≤Z≤94 based on the second-order many-body perturbation theory implemented in the Flexible Atomic Code.The electron correlations,Breit interaction and quantum electrodynamics effects are taken into account in the present calculations.The accuracy and reliability of our results are evaluated through comprehensive comparisons with available measurements and other theoretical results.For transition energies,our results are in good agreement with the recent experimental data obtained from the electron beam ion traps within 0.18%.The maximum discrepancy between our results and those obtained with the large-scale multiconfiguration Dirac–Hartee–Fock calculations by Grumer et al.[Phys.Rev.A 89062501(2014)]is less than 0.13%along the isoelectronic sequence.Furthermore,the corresponding M1 transition rates are also reported.The present results can be used as the benchmark and useful for spectra simulation and diagnostics of astrophysical and fusion plasmas.展开更多
The crystallographic structure and magnetic properties of La(Fell.4Alz.6)C0.02 are studied by magnetic measurernent and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement sho...The crystallographic structure and magnetic properties of La(Fell.4Alz.6)C0.02 are studied by magnetic measurernent and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement shows that La(Fe11.4Al1.6)C0.02 crystallizes into the cubic NaZn13-type with two different Fe sites: FeI (8b) and FeII (96i), and that A1 atoms preferentially occupy the FeII site. A ferromagnetic state can he induced at a medial temperature of 39 K-139 K by an external magnetic field of 0.7 T, and a large lattice is correspondingly found at 100 K and 0.7 T. In all other conditions, La(Fe11.4Al1.6)C0.02 has no net magnetization in the paramagnetic (T 〉 TN = 182 K) or antifer- romagnetic states, and thus keeps its small lattice. Analysis of the Fe Fe bond length indicates that the ferromagnetic state prefers longer Fe-Fe distances.展开更多
基金supported by the National Natural Science Foundation of China (U1909212, U1809217, and 11474249)supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering (Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358)。
文摘Oxide heterointerface is a platform to create unprecedented two-dimensional electron gas, superconductivity and ferromagnetism, arising from a polar discontinuity at the interface. In particular, the ability to tune these intriguing effects paves a way to elucidate their fundamental physics and to develop novel electronic/magnetic devices. In this work, we report for the first time that a ferroelectric polarization screening at SrTiO_(3)/PbTiO_(3) interface is able to drive an electronic construction of Ti atom, giving rise to room-temperature ferromagnetism. Surprisingly, such ferromagnetism can be switched to antiferromagnetism by applying a magnetic field, which is reversible. A coupling of itinerant electrons with local moments at interfacial Ti3d orbital was proposed to explain the magnetism. The localization of the itinerant electrons under a magnetic field is responsible for the suppression of magnetism. These findings provide new insights into interfacial magnetism and their control by magnetic field relevant interfacial electrons promising for device applications.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200)the National Natural Science Foundation of China (Grant No. 11774429)+1 种基金the NSAF (Grant No. U1830206)the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2021RC4026)。
文摘Exploring the novel structural phase of van der Waals(vdW) magnets would promote the development of spintronics.Here, through first-principles calculations, we report a novel monoclinic structure of vdW layered 1T-CrTe2, which is one of the popular vdW magnets normally exhibiting a trigonal structure. The new monoclinic phase emerges from a switchable magnetic state between ferromagnetism and antiferromagnetism through changing hole doping concentration, which suggests a practical approach to obtain such a structure. The results of phonon dispersion and energy analysis convince us that the monoclinic structure is a metastable phase even without hole doping. When the hole doping concentration increases,the stability analysis indicates the preference for a novel monoclinic phase rather than a conventional trigonal phase, and meanwhile, the magnetic properties are accordingly tuned. This work provides new insights into the phase engineering of the chalcogenide family and the electrical control of magnetism of vdW layered magnets.
基金supported by Science and Technology Research Project for Education Department of Jiangxi Province, China (Grant No. GJJ218509)。
文摘We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagonal structure(space group: P63/cm) and exhibit a successive complicated magnetic phase transition. The extensive magnetic phase transitions contribute to the broad temperature range of MCEs exhibiting in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds, with maximum magnetic entropy change(-ΔSM_(max)) and refrigeration capacity of 10.2 J·kg^(-1)·K^(-1), 356.3 J/kg and 11.5 J·kg^(-1)·K^(-1),393.3 J/kg under varying magnetic fields 0–5 T, respectively. Remarkably, the δTFWHMvalues(the temperature range corresponding to 1/2×|-ΔSM_(max)|) of Er5Si3Bx(x=0.3,0.6) compounds were up to 41.8 K and 39.6 K, respectively. Thus, the present work provides a potential magnetic refrigeration material with a broad temperature range MCEs for applications in cryogenic magnetic refrigerators.
基金Project supported by the National Natural Science Foundation of China (Grant No. 52173283)the Taishan Scholar Program of Shandong Province,China (Grant No. ts20190939)the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043)。
文摘Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH insulator with high Chern number is conducive to spintronic devices with lower energy consumption. Here, we find that monolayer Fe SIn is a good candidate for realizing the QAH phase;it exhibits a high magnetic transition temperature of 221 K and tunable C = ±2 with respect to magnetization orientation in the y–z plane. After the application of biaxial strain, the magnetic axis shifts from the x–y plane to the z direction, and the effect of the high C and ferromagnetic ground state on the stress is robust. Also, the effect of correlation U on C has been examined. These properties are rooted in the large size of the Fe atom that contributes to ferromagnetic kinetic exchange with neighboring Fe atoms. These findings demonstrate monolayer Fe SIn to be a major template for probing novel QAH devices at higher temperatures.
基金supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant Nos.NY222167 and NY220005)。
文摘As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites rely on the cubic/orthorhombic structures, while the hexagonal structure is much less studied. Here first-principles calculations are employed to investigate the magnetic and electronic structures of La-doped 4H-SrMnO_(3). By systematically analyzing the two kinds of La-doped positions, our calculations predict that the doped electron with lattice distortion would prefer to form polarons, which contribute to the local magnetic phase transition, nonzero net magnetization, and semiconducting behavior. In addition, the energy gap decreases gradually with increasing doping concentration, indicating a tendency of insulator–metal transition.
基金funded by the National Key R&D Program of China(No.2020YFA0406202)the Natural Science Foundation of China(Nos.22008006,22090042 and 21731001)the Fundamental Research Funds for the Central Universities(Nos.FRF-IDRY-20-005 and FRF-TP-20-077A1).
文摘Anomalous thermal expansion,or other words,negative thermal expansion(NTE),resulting from the lattice contraction upon temperature increasing,has been an enduring topic for material science and engineering.The variation of a lattice go with the temperature is straightly originated from its electronic structures and is inseparable from those physical properties.In the past several decades,many efforts have been made to searching new series of NTE compounds or control the thermal expansion performance in order to supply various demands of different extreme applications.These development of new NTE systems also dependences on the theoretical studies.Here,we carried out theoretical calculation on CrB_(2) and FeZr_(2) with anisotropic negative thermal expansion.Intriguingly,theoretical calculations reveal that the binding of either Cr-Cr pair or Fe-Fe pair is relatively small.The results reveal that the origin of NTE is the ordered magnetic state during the increasing of temperature.The localized electrons would prevent the lattice parameters increase with heating,which shows macroscopic NTE phenomenon.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50701022,51001019,and 50831006)the Program for New Century Excellent Talents of China (Grant No. NCET-08-0278)
文摘We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1-xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferromagnetic to paramagnetic states with large changes of magnetization are observed at room temperature. Further increasing the content of Mn (x = 0.11) gives rise to a single second-order magnetic transition. Interestingly, large low-field magnetic entropy changes with almost zero magnetic hysteresis are observed in these alloys. The effects of Mn/Co ratio on magnetic transition and magnetocaloric effects are discussed in this paper.
基金Project supported by the State Key Program of Basic Research of China (Grant No 2006CB601101), and the National Natural Science Foundation of China ( Grant No 50271082).
文摘The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in detail for LaFe11.4Al1.6Cx with x=0.1, All the LaFe11.4Al1.6Cx (x=0-0.8) compounds have the cubic NaZn13-type structure. The addition of carbon atoms brings about a considerable increase in the lattice parameter. The bulk expansion results in the change of phase transition temperature (Tc), Tc increases from 187K to 269 K with x varying from 0.1 to 0.8, Meanwhile an increase in the lattice parameter can also cause a change of the magnetic ground state from antiferromagnetic to ferromagnetic. Large magnetic entropy change IASI is found over a large temperature range around Tc and the refrigerant capacity is about 322J/kg for LaFe11.4Al1.6C0.1. The magnetic phase transition belongs in weakly first-order one for x=0.1.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB601101)the National Natural Science Foundation of China (Grant No. 50731007)the Knowledge Innovation Project of the Chinese Academy of Sciences
文摘We have studied the magnetic and magnetocaloric properties of the Er3Co compound, which undergoes ferromagnetic ordering below the Curie temperature Tc = 13 K. It is found by fitting the isothermal magnetization curves that the Landau model is appropriate to describe the Er3Co compound. The giant magnetocaloric effect (MCE) without hysteresis loss around Tc is found to result from the second-order ferromagnetic-to-paramagnetic transition. The max- imal value of magnetic entropy change is 24.5 J/kg.K with a refrigerant capacity (RC) value of 476 J/kg for a field change of 0-5 T. Large reversible MEC and RC indicate the potentiality of Er3Co as a candidate magnetic refrigerant at low temperatures.
基金Funded by the National Natural Science Foundation of China(No.11547115)the Science Research Foundation for Ph D of Liaoning Province(No.201501091)
文摘The atomic geometry, structure stability, electronic and magnetic properties of VSe2 were systematically investigated based on the density functional theory(DFT). Varying from 3D to 2D four VSe2 structures, bulk 2H-VSe2 and 1T-VSe2, monolayer H-VSe2 and T-VSe2 are all demonstrated as thermodynamically stable by lattice dynamic calculations. More interestingly, the phase transition temperature is dramatically different due to the lattice size. Finally, owing to different crystal structures, H-VSe2 is semimetallic whereas T-VSe2 is totally metallic and also they have different magnetic moments. Our main argument is that being exfoliated from bulk to monolayer, 2H-VSe2 transforms to T-VSe2, accompanied by both semimetallic-metallic transition and dramatic magnetic moment variation. Our calculations provide a novel structure phase transition and an efficient way to modulate the electronic structure and magnetic moment of layered VSe2, which suggests potential applications as high-performance functional nanomaterial.
基金Project supported by the National Science Foundation of Chinathe National Basic Research Program of China and Institute of Physics,Chinese Academy of Sciences
文摘Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural and magnetic transitions and transform from ferro-magnetic martensitic phase to paramagnetic austenitic phase during heating. Under a field of 2 T, the maximum magnetic entropy change -Delta S-M of Ni55.2Mn18.6Ga26.15Gd0.05 alloy was 7.7 J/kg.K at 317 K during heating and 8.6 J/kg.K at 314 K during cooling while it was 11.8 J/kg.K at 317 K in Ni55.2Mn18.6Ga26.05Gd0.15 alloy during heating.
文摘Composition and electron concentration dependence of transformation temperature in Ni2+x+y Mn1-xGa1-y, Ni2+x Mn1-x Ga alloys with first order magnetic transition were studied. For Ni2 + x + y Mn1- x Ga1-y alloys, martensitic transformation temperature TM increases and Curie temperature Tc decreases with the increase of electron concentration e/a, they intercept at e/a = 7.68. TM and Tc decrease when continue to increase electron concentration. While for Ni2+x Mn1-xGa alloys, they cross at e/a = 7. 635. Before their crossing, the change tendency with e/a is the same as Ni2+x+yMn1-xGa1-y alloys;, after their crossing, both TM and Tc increase slowly. The different relations between TM and Tc and e/a within two NiMnGa alloys show that TM and Tc depend not only on e/a, but also on composition.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11004044)the Natural Science Foundation of Zhejiang Province,China(Grant No. Y4110581)
文摘The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase transition at TC ~ 51 K.A large reversible MCE is observed around TC.The values of maximum magnetic entropy change(-△SxMma) reach 5.6 J·kg^-1·K-1 and 13.3 J·kg^-1·K-1 for the field change of 2 T and 7 T,respectively,with no obvious hysteresis loss in the vicinity of Curie temperature.The corresponding maximum adiabatic temperature changes(△Tadmax) are evaluated to be 2.1 K and 5.0 K.The magnetic transition and the origin of large MCE in EuCu1.75P2 are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1230201,11274281,and 11304294)the Industrial Technology Development Program,China(Grant No.9045140509)the Funds from the Chinese Academy of Sciences(Grant Nos.KJCX2-SW-N03 and KJCX2-SW-N20)
文摘Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ~21% Cr, ,~6% Ni, and ~ 9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its crystal structures and compressive behaviors are investigated simultaneously using the synchrotron angle-dispersive x-ray diffraction technique. The SS 21-6-9 undergoes a structural phase transition from fcc to hcp structure at ~ 12.8 GPa with neglectable volume collapse within the determination error under the quasi-hydrostatic environment. The hcp structure remains stable up to the highest pressure of 250 GPa in the present experiments. The antiferromagnetic-to-nonmagnetic state transition of hcp SS 21-6-9 with the changes of inconspicuous density and structure, is discovered at ~50 GPa, and revealed by the significant change in c/a ratio. The hcp SS-21-6-9 is compressive anisotropic: it is more compressive in the c-axis direction than in the a-axis direction. Both the equations of states (EOSs) of fcc and hcp SS 21-6-9, which are in accordance with those of fcc and hcp pure irons respectively, are also presented. Furthermore, the c/a ratio of hcp SS 21-6-9 at infinite compression, R∞, is consistent with the values of pure iron and Fe-10Ni alloy.
文摘A phenomenological model based on phase separation between ferromagnetic metallic and paramagnetic insulating domains was applied to analyze the electrical transport and colossal magnetoresistance for mixed-valent manganites of RE_(2/3)AE_(1/3)MnO_3. The results show that the model can yield results in agreement with experimental observations in these manganites. The present approach provides a simple picture to visualize the reason that the temperature dependence of resistance (with and without applied magnetic fields) in these compounds has the peculiar shape, without invoking any complicated concept.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175096)。
文摘Theoretical calculations of the energy levels and magnetic dipole transition parameters for the 1s^(2)2s^(2)2p^(3) and 1s^(2)2p^(5) configurations of nitrogen isoelectronic sequence with Z=21-30 are performed using multi-congfiguration Dirac-Fock(MCDF)method.Based on the relativistic computational code GRASP2k compiled within the framework of MCDF method,the electron correlations,Breit interaction and QED effects are well treated in detail.The energy levels,line strengths and transition rates of magnetic dipole transition are obtained and compared with the experimental data avail-able.For most cases,good agreements are achieved and the relative differences of them are less than 0.114%,8.43% and 9.80%,respectively.The scaling laws of the fine structure splitting and transition rate are obtained on the isoelec-tronic sequence and the corresponding physical mechanisms are discussed.The data sets for tables are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00022.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2015XKMS073)
文摘We investigate magnetic ordering and electronic structures of Cr2MoO6under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electronic structures of Cr2MoO6. The insulating nature at the experimental crystal structure is produced, with a band gap of 1.04 eV, and the magnetic moment of the Cr atom is 2.50 μB, compared to an experimental value of about 2.47 μB. The calculated results show that an antiferromagnetic inter-bilayer coupling–ferromagnetic intra-bilayer coupling to a ferromagnetic inter-bilayer coupling–antiferromagnetic intra-bilayer coupling phase transition is produced with the pressure increasing. The magnetic phase transition is simultaneously accompanied by a semiconductor–metal phase transition. The magnetic phase transition can be explained by the Mo–O hybridization strength, and ferromagnetic coupling between two Cr atoms can be understood by empty Mo-d bands perturbing the nearest O-p orbital.
基金supported by the National Natural Science Foundation of China (Grants Nos. 50025102 and 50631040)the National Basic Research Program of China (Grant No. 2006CB601101)+1 种基金the Exchange Program between NIST and the Chinese Academy of Sciencesthe Natural Science Foundation of Guangxi Province, China (Grant No. 2012GXNSFGA060002)
文摘Our recent studies of the crystal structures, phase transitions, and magnetic properties of intermetallic compounds RsM4 (R = rare earths; M = Si, Ge) are reviewed briefly. First, crystal structures, phase relationships, and magnetic prop- erties of several 5:4 compounds, including Nd5 Si4-xGex, Pr5 Si4_xGex, Gds-xLaxGe4, La5 Si4, and Gd5 Sn4, are presented. In particular, the canted spin structures as well as the magnetic phase transitions in PrsSi2Ge2 and PrsGe4 investigated by neutron powder diffractions and small-angle neutron scattering are reviewed. Second, the crystal structures and magnetic properties of the most studied compounds Gds(Si,Ge)4 are summarized. The focus is on the parent compound GdsGe4, which is an amazing material exhibiting magnetic anisotropy, angular dependent spin-flop transition, metastable magnetic response, Griffiths-like phase, thermal effect under pulsed fields, antiferromagnetic and ferromagnetic resonances, pro- nounced effects of impurities, and high-field induced magnetic transitions.
基金the National Natural Science Foundation of China(Grant Nos.11874090,11934004,11404180,11604052,and 11774037)the National Key Research and Development Program of China(Grant No.2017YFA0402300).
文摘Systematic calculations and assessments are performed for the magnetic dipole(M1)transition energies and rates between the ^(2)F^(o)_(5/2,7/2) levels in the ground configuration 4d104f along the Ag-like isoelectronic sequence with 62≤Z≤94 based on the second-order many-body perturbation theory implemented in the Flexible Atomic Code.The electron correlations,Breit interaction and quantum electrodynamics effects are taken into account in the present calculations.The accuracy and reliability of our results are evaluated through comprehensive comparisons with available measurements and other theoretical results.For transition energies,our results are in good agreement with the recent experimental data obtained from the electron beam ion traps within 0.18%.The maximum discrepancy between our results and those obtained with the large-scale multiconfiguration Dirac–Hartee–Fock calculations by Grumer et al.[Phys.Rev.A 89062501(2014)]is less than 0.13%along the isoelectronic sequence.Furthermore,the corresponding M1 transition rates are also reported.The present results can be used as the benchmark and useful for spectra simulation and diagnostics of astrophysical and fusion plasmas.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2010CB833102)the National Natural Science Foundation of China (Grant No. 10974244)
文摘The crystallographic structure and magnetic properties of La(Fell.4Alz.6)C0.02 are studied by magnetic measurernent and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement shows that La(Fe11.4Al1.6)C0.02 crystallizes into the cubic NaZn13-type with two different Fe sites: FeI (8b) and FeII (96i), and that A1 atoms preferentially occupy the FeII site. A ferromagnetic state can he induced at a medial temperature of 39 K-139 K by an external magnetic field of 0.7 T, and a large lattice is correspondingly found at 100 K and 0.7 T. In all other conditions, La(Fe11.4Al1.6)C0.02 has no net magnetization in the paramagnetic (T 〉 TN = 182 K) or antifer- romagnetic states, and thus keeps its small lattice. Analysis of the Fe Fe bond length indicates that the ferromagnetic state prefers longer Fe-Fe distances.