期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Reversible magnetism transition at ferroelectric oxide heterointerface 被引量:2
1
作者 Jialu Chen Zijun Zhang +10 位作者 Liang Luo Yunhao Lu Cheng Song Di Cheng Xing Chen Wei Li Zhaohui Ren Jigang Wang He Tian Ze Zhang Gaorong Han 《Science Bulletin》 SCIE EI CSCD 2020年第24期2094-2099,M0005,共7页
Oxide heterointerface is a platform to create unprecedented two-dimensional electron gas, superconductivity and ferromagnetism, arising from a polar discontinuity at the interface. In particular, the ability to tune t... Oxide heterointerface is a platform to create unprecedented two-dimensional electron gas, superconductivity and ferromagnetism, arising from a polar discontinuity at the interface. In particular, the ability to tune these intriguing effects paves a way to elucidate their fundamental physics and to develop novel electronic/magnetic devices. In this work, we report for the first time that a ferroelectric polarization screening at SrTiO_(3)/PbTiO_(3) interface is able to drive an electronic construction of Ti atom, giving rise to room-temperature ferromagnetism. Surprisingly, such ferromagnetism can be switched to antiferromagnetism by applying a magnetic field, which is reversible. A coupling of itinerant electrons with local moments at interfacial Ti3d orbital was proposed to explain the magnetism. The localization of the itinerant electrons under a magnetic field is responsible for the suppression of magnetism. These findings provide new insights into interfacial magnetism and their control by magnetic field relevant interfacial electrons promising for device applications. 展开更多
关键词 SrTiO3/PbTiO3 Interface Ferroelectric polarization Magnetic transition
原文传递
A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
2
作者 任启迪 赖康 +2 位作者 陈家浩 余晓翔 戴佳钰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期436-441,共6页
Exploring the novel structural phase of van der Waals(vdW) magnets would promote the development of spintronics.Here, through first-principles calculations, we report a novel monoclinic structure of vdW layered 1T-CrT... Exploring the novel structural phase of van der Waals(vdW) magnets would promote the development of spintronics.Here, through first-principles calculations, we report a novel monoclinic structure of vdW layered 1T-CrTe2, which is one of the popular vdW magnets normally exhibiting a trigonal structure. The new monoclinic phase emerges from a switchable magnetic state between ferromagnetism and antiferromagnetism through changing hole doping concentration, which suggests a practical approach to obtain such a structure. The results of phonon dispersion and energy analysis convince us that the monoclinic structure is a metastable phase even without hole doping. When the hole doping concentration increases,the stability analysis indicates the preference for a novel monoclinic phase rather than a conventional trigonal phase, and meanwhile, the magnetic properties are accordingly tuned. This work provides new insights into the phase engineering of the chalcogenide family and the electrical control of magnetism of vdW layered magnets. 展开更多
关键词 van der Waals magnets magnetic transition hole doping
下载PDF
Structure, magnetism and magnetocaloric effects in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds
3
作者 郝志红 刘辉 张聚国 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期575-579,共5页
We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagona... We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagonal structure(space group: P63/cm) and exhibit a successive complicated magnetic phase transition. The extensive magnetic phase transitions contribute to the broad temperature range of MCEs exhibiting in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds, with maximum magnetic entropy change(-ΔSM_(max)) and refrigeration capacity of 10.2 J·kg^(-1)·K^(-1), 356.3 J/kg and 11.5 J·kg^(-1)·K^(-1),393.3 J/kg under varying magnetic fields 0–5 T, respectively. Remarkably, the δTFWHMvalues(the temperature range corresponding to 1/2×|-ΔSM_(max)|) of Er5Si3Bx(x=0.3,0.6) compounds were up to 41.8 K and 39.6 K, respectively. Thus, the present work provides a potential magnetic refrigeration material with a broad temperature range MCEs for applications in cryogenic magnetic refrigerators. 展开更多
关键词 magnetic materials cryogenic magnetic refrigeration magnetic phase transition magnetocaloric effects
下载PDF
Discovery of controllable high Chern number quantum anomalous Hall state in tetragonal lattice FeSIn
4
作者 任小浪 张昌文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期504-509,共6页
Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH ins... Quantum anomalous Hall(QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH insulator with high Chern number is conducive to spintronic devices with lower energy consumption. Here, we find that monolayer Fe SIn is a good candidate for realizing the QAH phase;it exhibits a high magnetic transition temperature of 221 K and tunable C = ±2 with respect to magnetization orientation in the y–z plane. After the application of biaxial strain, the magnetic axis shifts from the x–y plane to the z direction, and the effect of the high C and ferromagnetic ground state on the stress is robust. Also, the effect of correlation U on C has been examined. These properties are rooted in the large size of the Fe atom that contributes to ferromagnetic kinetic exchange with neighboring Fe atoms. These findings demonstrate monolayer Fe SIn to be a major template for probing novel QAH devices at higher temperatures. 展开更多
关键词 high Chern number Weyl semimetals quantum anomalous Hall insulator magnetic transition temperature
下载PDF
Magnetic and electronic properties of La-doped hexagonal 4H-SrMnO_(3)
5
作者 李杰 陈一楠 +3 位作者 宫诺 黄欣 杨志红 翁亚奎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期697-701,共5页
As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites re... As typical strongly correlated electronic materials, manganites show rich magnetic phase diagrams and electronic structures depending on the doped carrier density. Most previous relevant studies of doped manganites rely on the cubic/orthorhombic structures, while the hexagonal structure is much less studied. Here first-principles calculations are employed to investigate the magnetic and electronic structures of La-doped 4H-SrMnO_(3). By systematically analyzing the two kinds of La-doped positions, our calculations predict that the doped electron with lattice distortion would prefer to form polarons, which contribute to the local magnetic phase transition, nonzero net magnetization, and semiconducting behavior. In addition, the energy gap decreases gradually with increasing doping concentration, indicating a tendency of insulator–metal transition. 展开更多
关键词 MANGANITES POLARON magnetic phase transition
下载PDF
Theoretical study on anomalous thermal expansion of two AB_(2)-type compounds
6
作者 Xin Chen Yili Cao Xianran Xing 《Nano Research》 SCIE EI CSCD 2024年第11期9830-9833,共4页
Anomalous thermal expansion,or other words,negative thermal expansion(NTE),resulting from the lattice contraction upon temperature increasing,has been an enduring topic for material science and engineering.The variati... Anomalous thermal expansion,or other words,negative thermal expansion(NTE),resulting from the lattice contraction upon temperature increasing,has been an enduring topic for material science and engineering.The variation of a lattice go with the temperature is straightly originated from its electronic structures and is inseparable from those physical properties.In the past several decades,many efforts have been made to searching new series of NTE compounds or control the thermal expansion performance in order to supply various demands of different extreme applications.These development of new NTE systems also dependences on the theoretical studies.Here,we carried out theoretical calculation on CrB_(2) and FeZr_(2) with anisotropic negative thermal expansion.Intriguingly,theoretical calculations reveal that the binding of either Cr-Cr pair or Fe-Fe pair is relatively small.The results reveal that the origin of NTE is the ordered magnetic state during the increasing of temperature.The localized electrons would prevent the lattice parameters increase with heating,which shows macroscopic NTE phenomenon. 展开更多
关键词 negative thermal expansion(NTE) theoretical calculation magnet state transition band structures
原文传递
Effects of the Mn/Co ratio on the magnetic transition and magnetocaloric properties of Mn_(1+x)Co_(1-x)Ge alloys 被引量:5
7
作者 马胜灿 王敦辉 +3 位作者 轩海成 沈凌佳 曹庆琪 都有为 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期411-414,共4页
We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1-xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferr... We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1-xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferromagnetic to paramagnetic states with large changes of magnetization are observed at room temperature. Further increasing the content of Mn (x = 0.11) gives rise to a single second-order magnetic transition. Interestingly, large low-field magnetic entropy changes with almost zero magnetic hysteresis are observed in these alloys. The effects of Mn/Co ratio on magnetic transition and magnetocaloric effects are discussed in this paper. 展开更多
关键词 Mn/Co ratio magnetic transition magnetocaloric properties magnetic hysteresis losses
下载PDF
Magnetic entropy change and magnetic phase transition of LaFe11.4Al1.6Cx (x=0-0.8) compounds 被引量:2
8
作者 陈静 张宏伟 +2 位作者 张立刚 董巧燕 汪汝武 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第4期845-849,共5页
The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in det... The unit cell volume and phase transition temperature of LaFe11.4Al1.6Cx compounds have been studied. The magnetic entropy change, refrigerant capacity and the type of magnetic phase transition are investigated in detail for LaFe11.4Al1.6Cx with x=0.1, All the LaFe11.4Al1.6Cx (x=0-0.8) compounds have the cubic NaZn13-type structure. The addition of carbon atoms brings about a considerable increase in the lattice parameter. The bulk expansion results in the change of phase transition temperature (Tc), Tc increases from 187K to 269 K with x varying from 0.1 to 0.8, Meanwhile an increase in the lattice parameter can also cause a change of the magnetic ground state from antiferromagnetic to ferromagnetic. Large magnetic entropy change IASI is found over a large temperature range around Tc and the refrigerant capacity is about 322J/kg for LaFe11.4Al1.6C0.1. The magnetic phase transition belongs in weakly first-order one for x=0.1. 展开更多
关键词 LaFe11.4Al1.6Cx compounds magnetic phase transition magnetic entropy change refrigerant capacity
下载PDF
Order of magnetic transition and large magnetocaloric effect in Er_3Co 被引量:1
9
作者 沈俊 赵金良 +3 位作者 胡凤霞 吴剑峰 孙继荣 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期427-431,共5页
We have studied the magnetic and magnetocaloric properties of the Er3Co compound, which undergoes ferromagnetic ordering below the Curie temperature Tc = 13 K. It is found by fitting the isothermal magnetization curve... We have studied the magnetic and magnetocaloric properties of the Er3Co compound, which undergoes ferromagnetic ordering below the Curie temperature Tc = 13 K. It is found by fitting the isothermal magnetization curves that the Landau model is appropriate to describe the Er3Co compound. The giant magnetocaloric effect (MCE) without hysteresis loss around Tc is found to result from the second-order ferromagnetic-to-paramagnetic transition. The max- imal value of magnetic entropy change is 24.5 J/kg.K with a refrigerant capacity (RC) value of 476 J/kg for a field change of 0-5 T. Large reversible MEC and RC indicate the potentiality of Er3Co as a candidate magnetic refrigerant at low temperatures. 展开更多
关键词 Er3Co compound magnetocaloric effect magnetic transition
下载PDF
Tunable Electronic and Magnetic Properties from Structure Phase Transition of Layered Vanadium Diselenide 被引量:1
10
作者 张会 SUN Liting +2 位作者 DAI Yumei TONG Chuanjia 韩笑 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期574-578,共5页
The atomic geometry, structure stability, electronic and magnetic properties of VSe2 were systematically investigated based on the density functional theory(DFT). Varying from 3D to 2D four VSe2 structures, bulk 2H-... The atomic geometry, structure stability, electronic and magnetic properties of VSe2 were systematically investigated based on the density functional theory(DFT). Varying from 3D to 2D four VSe2 structures, bulk 2H-VSe2 and 1T-VSe2, monolayer H-VSe2 and T-VSe2 are all demonstrated as thermodynamically stable by lattice dynamic calculations. More interestingly, the phase transition temperature is dramatically different due to the lattice size. Finally, owing to different crystal structures, H-VSe2 is semimetallic whereas T-VSe2 is totally metallic and also they have different magnetic moments. Our main argument is that being exfoliated from bulk to monolayer, 2H-VSe2 transforms to T-VSe2, accompanied by both semimetallic-metallic transition and dramatic magnetic moment variation. Our calculations provide a novel structure phase transition and an efficient way to modulate the electronic structure and magnetic moment of layered VSe2, which suggests potential applications as high-performance functional nanomaterial. 展开更多
关键词 density functional theory vanadium diselenide structure phase transition magnetic property
下载PDF
Phase transition and magnetocaloric effect of Ni_(55.2)Mn_(18.6)Ga_(26.2-x)Gd_x (x=0,0.05,0.15) alloys
11
作者 鲍博 龙毅 +3 位作者 段静芳 吴光恒 叶荣昌 万发荣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第5期875-878,共4页
Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural an... Phase transition process and magnetic entropy change -Delta S of Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys were studied. Ni55.2Mn18.6Ga26.2-xGdx(x=0, 0.05, 0.15) alloys still underwent simultaneous structural and magnetic transitions and transform from ferro-magnetic martensitic phase to paramagnetic austenitic phase during heating. Under a field of 2 T, the maximum magnetic entropy change -Delta S-M of Ni55.2Mn18.6Ga26.15Gd0.05 alloy was 7.7 J/kg.K at 317 K during heating and 8.6 J/kg.K at 314 K during cooling while it was 11.8 J/kg.K at 317 K in Ni55.2Mn18.6Ga26.05Gd0.15 alloy during heating. 展开更多
关键词 NIMNGA magnetocaloric effect (MCE) magnetic transition structural transition magnetic entropy change rare earths
下载PDF
Electron Concentration Dependence of Transformation Temperature in Different NiMnGa Alloys with First Order Magnetic Transition
12
作者 Duan Jingfang Zhang Zeyu Wang Dong Long Yi YeRongchang Chang Yongqin 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第4期I0012-I0012,共1页
Composition and electron concentration dependence of transformation temperature in Ni2+x+y Mn1-xGa1-y, Ni2+x Mn1-x Ga alloys with first order magnetic transition were studied. For Ni2 + x + y Mn1- x Ga1-y alloys,... Composition and electron concentration dependence of transformation temperature in Ni2+x+y Mn1-xGa1-y, Ni2+x Mn1-x Ga alloys with first order magnetic transition were studied. For Ni2 + x + y Mn1- x Ga1-y alloys, martensitic transformation temperature TM increases and Curie temperature Tc decreases with the increase of electron concentration e/a, they intercept at e/a = 7.68. TM and Tc decrease when continue to increase electron concentration. While for Ni2+x Mn1-xGa alloys, they cross at e/a = 7. 635. Before their crossing, the change tendency with e/a is the same as Ni2+x+yMn1-xGa1-y alloys;, after their crossing, both TM and Tc increase slowly. The different relations between TM and Tc and e/a within two NiMnGa alloys show that TM and Tc depend not only on e/a, but also on composition. 展开更多
关键词 NiMnGa alloys electron concentration (e/a) martensitic transformation magnetic transition rare earths
下载PDF
Magnetic transition and large reversible magnetocaloric effect in EuCu_(1.75)P_2 compound
13
作者 霍德璇 廖罗兵 +2 位作者 李领伟 李妙 钱正洪 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期460-463,共4页
The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase ... The magnetocaloric effect(MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements.Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase transition at TC ~ 51 K.A large reversible MCE is observed around TC.The values of maximum magnetic entropy change(-△SxMma) reach 5.6 J·kg^-1·K-1 and 13.3 J·kg^-1·K-1 for the field change of 2 T and 7 T,respectively,with no obvious hysteresis loss in the vicinity of Curie temperature.The corresponding maximum adiabatic temperature changes(△Tadmax) are evaluated to be 2.1 K and 5.0 K.The magnetic transition and the origin of large MCE in EuCu1.75P2 are also discussed. 展开更多
关键词 EuCu1.75P2 compound magnetocaloric effect magnetic transition critical behavior
下载PDF
Structural and magnetic transition in stainless steel Fe-21Cr-6Ni-9Mn up to 250 GPa
14
作者 柳雷 侯琪玥 +7 位作者 张毅 敬秋民 王志刚 毕延 徐济安 李晓东 李延春 刘景 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期451-456,共6页
Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ~21% Cr, ,~6% Ni, and ~ 9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its c... Stainless steel Fe-21Cr-6Ni-9Mn (SS 21-6-9), with ~21% Cr, ,~6% Ni, and ~ 9% Mn in weight percentage, has wide applications in extensive fields. In the present study, SS 21-6-9 is compressed up to 250 GPa, and its crystal structures and compressive behaviors are investigated simultaneously using the synchrotron angle-dispersive x-ray diffraction technique. The SS 21-6-9 undergoes a structural phase transition from fcc to hcp structure at ~ 12.8 GPa with neglectable volume collapse within the determination error under the quasi-hydrostatic environment. The hcp structure remains stable up to the highest pressure of 250 GPa in the present experiments. The antiferromagnetic-to-nonmagnetic state transition of hcp SS 21-6-9 with the changes of inconspicuous density and structure, is discovered at ~50 GPa, and revealed by the significant change in c/a ratio. The hcp SS-21-6-9 is compressive anisotropic: it is more compressive in the c-axis direction than in the a-axis direction. Both the equations of states (EOSs) of fcc and hcp SS 21-6-9, which are in accordance with those of fcc and hcp pure irons respectively, are also presented. Furthermore, the c/a ratio of hcp SS 21-6-9 at infinite compression, R∞, is consistent with the values of pure iron and Fe-10Ni alloy. 展开更多
关键词 Fe-21Cr-6Ni-9Mn structure transition magnetic transition x-ray diffraction
下载PDF
Transport-magnetism Correlation and Colossal Magnetoresistance in Mixed-valent Manganites
15
作者 李建青 袁松柳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第2期49-52,共4页
A phenomenological model based on phase separation between ferromagnetic metallic and paramagnetic insulating domains was applied to analyze the electrical transport and colossal magnetoresistance for mixed-valent man... A phenomenological model based on phase separation between ferromagnetic metallic and paramagnetic insulating domains was applied to analyze the electrical transport and colossal magnetoresistance for mixed-valent manganites of RE_(2/3)AE_(1/3)MnO_3. The results show that the model can yield results in agreement with experimental observations in these manganites. The present approach provides a simple picture to visualize the reason that the temperature dependence of resistance (with and without applied magnetic fields) in these compounds has the peculiar shape, without invoking any complicated concept. 展开更多
关键词 manganite perovskites colossal magnetoresistance magnetic transition
下载PDF
Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
16
作者 Mu-Hong Hu Nan Wang +3 位作者 Pin-Jun Ouyang Xin-Jie Feng Yang Yang Chen-Sheng Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期103-110,共8页
Theoretical calculations of the energy levels and magnetic dipole transition parameters for the 1s^(2)2s^(2)2p^(3) and 1s^(2)2p^(5) configurations of nitrogen isoelectronic sequence with Z=21-30 are performed using mu... Theoretical calculations of the energy levels and magnetic dipole transition parameters for the 1s^(2)2s^(2)2p^(3) and 1s^(2)2p^(5) configurations of nitrogen isoelectronic sequence with Z=21-30 are performed using multi-congfiguration Dirac-Fock(MCDF)method.Based on the relativistic computational code GRASP2k compiled within the framework of MCDF method,the electron correlations,Breit interaction and QED effects are well treated in detail.The energy levels,line strengths and transition rates of magnetic dipole transition are obtained and compared with the experimental data avail-able.For most cases,good agreements are achieved and the relative differences of them are less than 0.114%,8.43% and 9.80%,respectively.The scaling laws of the fine structure splitting and transition rate are obtained on the isoelec-tronic sequence and the corresponding physical mechanisms are discussed.The data sets for tables are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00022. 展开更多
关键词 energy level magnetic dipole transition transition rate scaling law nitrogen-like ions multicongfiguration Dirac-Fock(MCDF)method
下载PDF
Pressure induced magnetic and semiconductor–metal phase transitions in Cr_2MoO_6
17
作者 郭三栋 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期284-287,共4页
We investigate magnetic ordering and electronic structures of Cr2MoO6under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electroni... We investigate magnetic ordering and electronic structures of Cr2MoO6under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electronic structures of Cr2MoO6. The insulating nature at the experimental crystal structure is produced, with a band gap of 1.04 eV, and the magnetic moment of the Cr atom is 2.50 μB, compared to an experimental value of about 2.47 μB. The calculated results show that an antiferromagnetic inter-bilayer coupling–ferromagnetic intra-bilayer coupling to a ferromagnetic inter-bilayer coupling–antiferromagnetic intra-bilayer coupling phase transition is produced with the pressure increasing. The magnetic phase transition is simultaneously accompanied by a semiconductor–metal phase transition. The magnetic phase transition can be explained by the Mo–O hybridization strength, and ferromagnetic coupling between two Cr atoms can be understood by empty Mo-d bands perturbing the nearest O-p orbital. 展开更多
关键词 magnetic phase transition PRESSURE magnetic coupling mechanism
下载PDF
Crystal structures, phase relationships, and magnetic phase transitions of R_5M_4 compounds (R = rare earths, M = Si, Ge)
18
作者 欧阳钟文 饶光辉 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期1-28,共28页
Our recent studies of the crystal structures, phase transitions, and magnetic properties of intermetallic compounds RsM4 (R = rare earths; M = Si, Ge) are reviewed briefly. First, crystal structures, phase relations... Our recent studies of the crystal structures, phase transitions, and magnetic properties of intermetallic compounds RsM4 (R = rare earths; M = Si, Ge) are reviewed briefly. First, crystal structures, phase relationships, and magnetic prop- erties of several 5:4 compounds, including Nd5 Si4-xGex, Pr5 Si4_xGex, Gds-xLaxGe4, La5 Si4, and Gd5 Sn4, are presented. In particular, the canted spin structures as well as the magnetic phase transitions in PrsSi2Ge2 and PrsGe4 investigated by neutron powder diffractions and small-angle neutron scattering are reviewed. Second, the crystal structures and magnetic properties of the most studied compounds Gds(Si,Ge)4 are summarized. The focus is on the parent compound GdsGe4, which is an amazing material exhibiting magnetic anisotropy, angular dependent spin-flop transition, metastable magnetic response, Griffiths-like phase, thermal effect under pulsed fields, antiferromagnetic and ferromagnetic resonances, pro- nounced effects of impurities, and high-field induced magnetic transitions. 展开更多
关键词 crystal structure phase relationship magnetic phase transition
下载PDF
M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤ Z ≤ 94
19
作者 Ju Meng Wen-Xian Li +4 位作者 Ji-Guang Li Ze-Qing Wu Jun Yan Yong Wu Jian-Guo Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期221-226,共6页
Systematic calculations and assessments are performed for the magnetic dipole(M1)transition energies and rates between the ^(2)F^(o)_(5/2,7/2) levels in the ground configuration 4d104f along the Ag-like isoelectronic ... Systematic calculations and assessments are performed for the magnetic dipole(M1)transition energies and rates between the ^(2)F^(o)_(5/2,7/2) levels in the ground configuration 4d104f along the Ag-like isoelectronic sequence with 62≤Z≤94 based on the second-order many-body perturbation theory implemented in the Flexible Atomic Code.The electron correlations,Breit interaction and quantum electrodynamics effects are taken into account in the present calculations.The accuracy and reliability of our results are evaluated through comprehensive comparisons with available measurements and other theoretical results.For transition energies,our results are in good agreement with the recent experimental data obtained from the electron beam ion traps within 0.18%.The maximum discrepancy between our results and those obtained with the large-scale multiconfiguration Dirac–Hartee–Fock calculations by Grumer et al.[Phys.Rev.A 89062501(2014)]is less than 0.13%along the isoelectronic sequence.Furthermore,the corresponding M1 transition rates are also reported.The present results can be used as the benchmark and useful for spectra simulation and diagnostics of astrophysical and fusion plasmas. 展开更多
关键词 Ag-like ions magnetic dipole transition fine-structure splitting
下载PDF
The interplay between the lattice and magnetism in La(Fe_(11.4)Al_(1.6))C_(0.02) studied by powder neutron diffraction
20
作者 王志翠 何伦华 +2 位作者 王海 刘荣灯 王芳卫 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期419-423,共5页
The crystallographic structure and magnetic properties of La(Fell.4Alz.6)C0.02 are studied by magnetic measurernent and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement sho... The crystallographic structure and magnetic properties of La(Fell.4Alz.6)C0.02 are studied by magnetic measurernent and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement shows that La(Fe11.4Al1.6)C0.02 crystallizes into the cubic NaZn13-type with two different Fe sites: FeI (8b) and FeII (96i), and that A1 atoms preferentially occupy the FeII site. A ferromagnetic state can he induced at a medial temperature of 39 K-139 K by an external magnetic field of 0.7 T, and a large lattice is correspondingly found at 100 K and 0.7 T. In all other conditions, La(Fe11.4Al1.6)C0.02 has no net magnetization in the paramagnetic (T 〉 TN = 182 K) or antifer- romagnetic states, and thus keeps its small lattice. Analysis of the Fe Fe bond length indicates that the ferromagnetic state prefers longer Fe-Fe distances. 展开更多
关键词 neutron diffraction crystallographic structure magnetic phase transition
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部