There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock...There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock surfaces.This is important as the colloidal transport of NPs through the reservoir is subject to particle adsorption on the rock surface.Molecular dynamics simulation was used to determine the interfacial energy(strength) and adsorption of Fe2 O3 and Fe3 O4 nanofluids infused in reservoir sandstones.Fourier transform infrared spectroscopy and X-ray photon spectroscopy(XPS) were used to monitor interaction of silicate species with Fe2 O3 and Fe3 O4.The spectral changes show the variation of dominating silicate anions in the solution.Also,the XPS peaks for Si,C and Fe at 190,285 and 700 eV,respectively,are less distinct in the spectra of sandstone aged in the Fe3 O4 nanofluid,suggesting the intense adsorption of the Fe3 O4 with the crude oil.The measured IFT for brine/oil,Fe2 O3/oil and Fe3 O4/oil are 40,36.17 and 31 mN/m,respectively.Fe3 O4 infused with reservoir sandstone exhibits a higher silicate sorption capacity than Fe2 O3,due to their larger number of active surface sites and saturation magnetization,which accounts for the effectiveness of Fe3 O4 in reducing IFT.展开更多
The iron-oxide system can be used as a marker of oxidized and reduced conditions in closed systems. However, natural rocks with iron-oxide minerals also exhibit such reactions, although the natural system is typically...The iron-oxide system can be used as a marker of oxidized and reduced conditions in closed systems. However, natural rocks with iron-oxide minerals also exhibit such reactions, although the natural system is typically open. To understand the behaviour of this natural system, they were investigated the similarities, in terms of crystallographic textures, between the microstructures of two systems: natural open system and synthetic closed system of iron-oxide phase transformation.展开更多
The Oxia mineralized granite is the product of differentiation in the external parts of the Florina magmatic mass. Acidic hydrothermal solutions either of magmatic or of meteoric origin reacted with the upper tectonic...The Oxia mineralized granite is the product of differentiation in the external parts of the Florina magmatic mass. Acidic hydrothermal solutions either of magmatic or of meteoric origin reacted with the upper tectonically fractured parts of the Florina granite and became enriched in iron, thorium, uranium, zircon and rare-earth elements. The most abundant alteration minerals are sericite and quartz, while the minerals of the mineralization bands include magnetite, hematite, thorite, monazite and zircon. The outer parts of the Oxia granite made it easy the percolation of hydrothermal solutions from the deeper heater to the upper cooler parts of the granite which acted as a hot spot.展开更多
The replacement of magnetite by hematite was studied through a series of experiments under mild hydrothermal conditions(140 -220℃, vapour saturated pressures) to quantify the kinetics of the transformation and the re...The replacement of magnetite by hematite was studied through a series of experiments under mild hydrothermal conditions(140 -220℃, vapour saturated pressures) to quantify the kinetics of the transformation and the relative effects of redox and non-redox processes on the transformation. The results indicate that oxygen is not an essential factor in the replacement reaction of magnetite by hematite, but the addition of excess oxidant does trigger the oxidation reaction, and increases the kinetics of the transformation. However, even under high O_2(aq) environments, some of the replacement still occurred via Fe^(2+) leaching from magnetite. The kinetics of the replacement reaction depends upon temperature and solution parameters such as pH and the concentrations of ligands, all of which are factors that control the solubility of magnetite and affect the transport of Fe^(2+) (and the oxidant) to and from the reaction front. Reaction rates are fast at ~200℃, and in nature transport properties of Fe and,in the case of the redox-controlled replacement, the oxidant will be the rate-limiting control on the reaction progress. Using an Avrami treatment of the kinetic data and the Arrhenius equation, the activation energy for the transformation under non-redox conditions was calculated to be 26 ± 6 kJ mol^(-1).This value is in agreement with the reported activation energy for the dissolution of magnetite, which is the rate-limiting process for the transformation under non-redox conditions.展开更多
To understand the formation and growth mechanism of the magnetite phase during the fluidized reduction of hematite, a high-purity hematite ore was isothermally reduced using a 20vol% CO 80vol% CO2 gas mixture in a mic...To understand the formation and growth mechanism of the magnetite phase during the fluidized reduction of hematite, a high-purity hematite ore was isothermally reduced using a 20vol% CO 80vol% CO2 gas mixture in a micro-fluidized bed to examine the process of the selective conversion of hematite to magnetite. The micro-structural characteristics of the magnetite phase were investigated using scanning electron microscopy (SEM) and the Brunauer, Emmett, and Teller (BET) method, and the thickness of the magnetite layer was measured and evaluated using statistical analysis. The experimental results showed that the fresh magnetite nuclei were dense needles of different lengths, and the original hematite grains became porous after complete reduction to the magnetite phase. The thickness of the mag- netite layer increased with an increase in reduction temperature and reduction time. The growth kinetics of the magnetite layer was investi- gated, and the value of the activation energy E was estimated to be 28.33 kJ/mol.展开更多
The effect of alumina occurrence form on the metallurgical properties of both hematite and magnetite pellets was investigated at the same Al_(2)O level of 2 wt.%,including reduction index(RI),low-temperature reduction...The effect of alumina occurrence form on the metallurgical properties of both hematite and magnetite pellets was investigated at the same Al_(2)O level of 2 wt.%,including reduction index(RI),low-temperature reduction disintegration index(RDI),reduction swelling index(RSI),and high-temperature softening-dripping performance.The mineralogy of fired pellets was also studied to reveal the influence of alumina occurrence form on the phase composition and microstructure.From the results,the alumina occurrence form presents tremendous impacts on the metallurgical perfor-mance of both magnetite and hematite pellets.Addition of all alumina occurrence forms contributes to inferior reducibility of pellets,especially in the case of gibbsite for magnetite pellets with a RI of 58.4%and kaolinite for hematite pellets with a RI of 56.8%.However,addition of all alumina occurrence forms improves the RDI of magnetite pellets,while there is no significant difference among various alumina occurrence forms.In contrast,alumina occurrence forms have little influence on the RDI of hematite pellets.The presence of free alumina,gibbsite,and kaolinite tends to improve the RSI of hematite and magnetite pellets,whereas hercynite gives the opposite trend with a RSI of 25.6%.For softening-dripping performance of magnetite pellets,all alumina occurrence forms contribute to narrower softening-melting interval.Meanwhile,alumina,gibbsite,and kaolinite give narrower softening-dripping interval,at 229,217,and 88℃,respectively,whereas addition of hercynite results in the largest melting range at 276℃ due to its high melting point.Regarding hematite pellets,free alumina,gibbsite,and hercynite tend to enlarge melting range,whereas kaolinite contributes to lower dripping temperature of 1148℃ and narrow softening-dripping interval of 88℃ due to the formation of a greater amount of slag phase at high temperatures.展开更多
Rock magnetism is useful in various applications. Hematite is one of the two most important carriers of magnetism in the natural world and its magnetic features were mostly studied through laboratory experiments using...Rock magnetism is useful in various applications. Hematite is one of the two most important carriers of magnetism in the natural world and its magnetic features were mostly studied through laboratory experiments using synthetic hematite samples. A gap exists between the magnetic behaviors of hematite contained in the natural rocks and ores and those of synthetic hematite samples. This paper presents the results of a rock magnetism study on the natural hematite ores from the Whaleback mine in the Hamersley Province in the northwest of Western Australia. It was found that high-grade hematite ores carry a much higher remanent magnetization than induced magnetization. Hematite ores with less than 0.1% magnetite appear to have an exponential correlation between the bulk susceptibility and hematite content in weight percentage, different from the commonly accepted linear relationship between the bulk susceptibility and hematite content obtained from synthetic hematite samples. The new knowledge gained from this study contributes to a better understanding of magnetic behaviors of hematite, particularly natural hematite, and hence applications to other relevant disciplines.展开更多
The reductive Bayer digestion by using iron powder as reductant is proposed to convert hematite to magnetite and further to dissociate iron minerals from sodium aluminosilicate hydrate(desilication product,DSP)based o...The reductive Bayer digestion by using iron powder as reductant is proposed to convert hematite to magnetite and further to dissociate iron minerals from sodium aluminosilicate hydrate(desilication product,DSP)based on the differences of their surface properties.The results show that the differences of surface properties between magnetite and DSP in zeta potential,wettability and solvation trend facilitate magnetite to agglomerate,grow up and thus to dissociate from DSP.The increments of reductant amount and alkali concentration favor the transformation of hematite in digestion with the relative alumina recovery of98.91%.Processing the resultant red mud can obtain qualified iron concentrate with iron grade of approximate60%and recovery of about86%through magnetic separation,resulting in reduction of red mud emission higher than70%.The results are potential to develop a novel technology for processing high iron diasporic bauxite efficiently and provide references for comprehensive utilization of high iron red mud.展开更多
The separation of iron oxide from banded hematite jasper(BHJ) assaying 47.8% Fe, 25.6% Si O2 and 2.30%Al2O3 using selective magnetic coating was studied. Characterization studies of the low grade ore indicate that bes...The separation of iron oxide from banded hematite jasper(BHJ) assaying 47.8% Fe, 25.6% Si O2 and 2.30%Al2O3 using selective magnetic coating was studied. Characterization studies of the low grade ore indicate that besides hematite and goethite,jasper, a microcrystalline form of quartzite, is the major impurity associated with this ore. Beneficiation by conventional magnetic separation technique could yield a magnetic concentrate containing 60.8% Fe with 51% Fe recovery. In order to enhance the recovery of the iron oxide minerals, fine magnetite, colloidal magnetite and oleate colloidal magnetite were used as the coating material. When subjected to magnetic separation, the coated ore produces an iron concentrate containing 60.2% Fe with an enhanced recovery of56%. The AFM studies indicate that the coagulation of hematite particles with the oleate colloidal magnetite facilitates the higher recovery of iron particles from the low grade BHJ iron ore under appropriate conditions.展开更多
毛里塔尼亚粉状(+5.0 mm 22.10%)酸性铁矿石铁品位58.65%,硫、磷含量极低,主要杂质成分为硅,铁在各粒级没有明显的富集现象。为确定该矿石的选矿工艺,进行了实验室试验和工业生产试验。结果表明,在磨矿细度-0.074 mm68.75%、强磁选磁感...毛里塔尼亚粉状(+5.0 mm 22.10%)酸性铁矿石铁品位58.65%,硫、磷含量极低,主要杂质成分为硅,铁在各粒级没有明显的富集现象。为确定该矿石的选矿工艺,进行了实验室试验和工业生产试验。结果表明,在磨矿细度-0.074 mm68.75%、强磁选磁感应强度为1.0 T的条件下,可获得铁品位64.09%、铁回收率92.18%的铁精矿;采用闭路磨矿—弱磁选—2次强磁粗选流程进行工业生产试验,可获得产率85.10%、铁品位63.54%、铁回收率92.68%的总精矿,铁品位28.68%的尾矿可作为铁质校正原料销售至周边水泥厂,实现资源的综合利用。展开更多
文摘There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock surfaces.This is important as the colloidal transport of NPs through the reservoir is subject to particle adsorption on the rock surface.Molecular dynamics simulation was used to determine the interfacial energy(strength) and adsorption of Fe2 O3 and Fe3 O4 nanofluids infused in reservoir sandstones.Fourier transform infrared spectroscopy and X-ray photon spectroscopy(XPS) were used to monitor interaction of silicate species with Fe2 O3 and Fe3 O4.The spectral changes show the variation of dominating silicate anions in the solution.Also,the XPS peaks for Si,C and Fe at 190,285 and 700 eV,respectively,are less distinct in the spectra of sandstone aged in the Fe3 O4 nanofluid,suggesting the intense adsorption of the Fe3 O4 with the crude oil.The measured IFT for brine/oil,Fe2 O3/oil and Fe3 O4/oil are 40,36.17 and 31 mN/m,respectively.Fe3 O4 infused with reservoir sandstone exhibits a higher silicate sorption capacity than Fe2 O3,due to their larger number of active surface sites and saturation magnetization,which accounts for the effectiveness of Fe3 O4 in reducing IFT.
文摘The iron-oxide system can be used as a marker of oxidized and reduced conditions in closed systems. However, natural rocks with iron-oxide minerals also exhibit such reactions, although the natural system is typically open. To understand the behaviour of this natural system, they were investigated the similarities, in terms of crystallographic textures, between the microstructures of two systems: natural open system and synthetic closed system of iron-oxide phase transformation.
文摘The Oxia mineralized granite is the product of differentiation in the external parts of the Florina magmatic mass. Acidic hydrothermal solutions either of magmatic or of meteoric origin reacted with the upper tectonically fractured parts of the Florina granite and became enriched in iron, thorium, uranium, zircon and rare-earth elements. The most abundant alteration minerals are sericite and quartz, while the minerals of the mineralization bands include magnetite, hematite, thorite, monazite and zircon. The outer parts of the Oxia granite made it easy the percolation of hydrothermal solutions from the deeper heater to the upper cooler parts of the granite which acted as a hot spot.
基金possible by the financial support of the Australian Research Council (Grant DP140102765)
文摘The replacement of magnetite by hematite was studied through a series of experiments under mild hydrothermal conditions(140 -220℃, vapour saturated pressures) to quantify the kinetics of the transformation and the relative effects of redox and non-redox processes on the transformation. The results indicate that oxygen is not an essential factor in the replacement reaction of magnetite by hematite, but the addition of excess oxidant does trigger the oxidation reaction, and increases the kinetics of the transformation. However, even under high O_2(aq) environments, some of the replacement still occurred via Fe^(2+) leaching from magnetite. The kinetics of the replacement reaction depends upon temperature and solution parameters such as pH and the concentrations of ligands, all of which are factors that control the solubility of magnetite and affect the transport of Fe^(2+) (and the oxidant) to and from the reaction front. Reaction rates are fast at ~200℃, and in nature transport properties of Fe and,in the case of the redox-controlled replacement, the oxidant will be the rate-limiting control on the reaction progress. Using an Avrami treatment of the kinetic data and the Arrhenius equation, the activation energy for the transformation under non-redox conditions was calculated to be 26 ± 6 kJ mol^(-1).This value is in agreement with the reported activation energy for the dissolution of magnetite, which is the rate-limiting process for the transformation under non-redox conditions.
基金financially supported by the National Science Foundation of China (Nos. 51734005 and 51674065)the China Postdoctoral Science Foundation (No. 2018M631812)Open Foundation of State Key Laboratory of Mineral Processing, Beijing General Research Institute of Mining & Metallurgy Group, China (No. BGRIMM-KJSKL-2019-09)
文摘To understand the formation and growth mechanism of the magnetite phase during the fluidized reduction of hematite, a high-purity hematite ore was isothermally reduced using a 20vol% CO 80vol% CO2 gas mixture in a micro-fluidized bed to examine the process of the selective conversion of hematite to magnetite. The micro-structural characteristics of the magnetite phase were investigated using scanning electron microscopy (SEM) and the Brunauer, Emmett, and Teller (BET) method, and the thickness of the magnetite layer was measured and evaluated using statistical analysis. The experimental results showed that the fresh magnetite nuclei were dense needles of different lengths, and the original hematite grains became porous after complete reduction to the magnetite phase. The thickness of the mag- netite layer increased with an increase in reduction temperature and reduction time. The growth kinetics of the magnetite layer was investi- gated, and the value of the activation energy E was estimated to be 28.33 kJ/mol.
基金supported by the National Natural Science Foundation of China(No.52004339)the Key Research and Development Project of Hunan Province,China(No.2022SK2075)+1 种基金China Baowu Low Carbon Metallurgy Innovation Foudation(BWLCF_(2)02216)the Open Sharing Fund for the Large-Scale Instruments and Equipment of Central South University(CSUZC202207).
文摘The effect of alumina occurrence form on the metallurgical properties of both hematite and magnetite pellets was investigated at the same Al_(2)O level of 2 wt.%,including reduction index(RI),low-temperature reduction disintegration index(RDI),reduction swelling index(RSI),and high-temperature softening-dripping performance.The mineralogy of fired pellets was also studied to reveal the influence of alumina occurrence form on the phase composition and microstructure.From the results,the alumina occurrence form presents tremendous impacts on the metallurgical perfor-mance of both magnetite and hematite pellets.Addition of all alumina occurrence forms contributes to inferior reducibility of pellets,especially in the case of gibbsite for magnetite pellets with a RI of 58.4%and kaolinite for hematite pellets with a RI of 56.8%.However,addition of all alumina occurrence forms improves the RDI of magnetite pellets,while there is no significant difference among various alumina occurrence forms.In contrast,alumina occurrence forms have little influence on the RDI of hematite pellets.The presence of free alumina,gibbsite,and kaolinite tends to improve the RSI of hematite and magnetite pellets,whereas hercynite gives the opposite trend with a RSI of 25.6%.For softening-dripping performance of magnetite pellets,all alumina occurrence forms contribute to narrower softening-melting interval.Meanwhile,alumina,gibbsite,and kaolinite give narrower softening-dripping interval,at 229,217,and 88℃,respectively,whereas addition of hercynite results in the largest melting range at 276℃ due to its high melting point.Regarding hematite pellets,free alumina,gibbsite,and hercynite tend to enlarge melting range,whereas kaolinite contributes to lower dripping temperature of 1148℃ and narrow softening-dripping interval of 88℃ due to the formation of a greater amount of slag phase at high temperatures.
文摘Rock magnetism is useful in various applications. Hematite is one of the two most important carriers of magnetism in the natural world and its magnetic features were mostly studied through laboratory experiments using synthetic hematite samples. A gap exists between the magnetic behaviors of hematite contained in the natural rocks and ores and those of synthetic hematite samples. This paper presents the results of a rock magnetism study on the natural hematite ores from the Whaleback mine in the Hamersley Province in the northwest of Western Australia. It was found that high-grade hematite ores carry a much higher remanent magnetization than induced magnetization. Hematite ores with less than 0.1% magnetite appear to have an exponential correlation between the bulk susceptibility and hematite content in weight percentage, different from the commonly accepted linear relationship between the bulk susceptibility and hematite content obtained from synthetic hematite samples. The new knowledge gained from this study contributes to a better understanding of magnetic behaviors of hematite, particularly natural hematite, and hence applications to other relevant disciplines.
基金Project(51374239)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by Environmental Protection’s Special Scientific Research for Chinese Public Welfare IndustryProject(2015CX001)supported by the Innovation-driven Plan in Central South University,China
文摘The reductive Bayer digestion by using iron powder as reductant is proposed to convert hematite to magnetite and further to dissociate iron minerals from sodium aluminosilicate hydrate(desilication product,DSP)based on the differences of their surface properties.The results show that the differences of surface properties between magnetite and DSP in zeta potential,wettability and solvation trend facilitate magnetite to agglomerate,grow up and thus to dissociate from DSP.The increments of reductant amount and alkali concentration favor the transformation of hematite in digestion with the relative alumina recovery of98.91%.Processing the resultant red mud can obtain qualified iron concentrate with iron grade of approximate60%and recovery of about86%through magnetic separation,resulting in reduction of red mud emission higher than70%.The results are potential to develop a novel technology for processing high iron diasporic bauxite efficiently and provide references for comprehensive utilization of high iron red mud.
文摘The separation of iron oxide from banded hematite jasper(BHJ) assaying 47.8% Fe, 25.6% Si O2 and 2.30%Al2O3 using selective magnetic coating was studied. Characterization studies of the low grade ore indicate that besides hematite and goethite,jasper, a microcrystalline form of quartzite, is the major impurity associated with this ore. Beneficiation by conventional magnetic separation technique could yield a magnetic concentrate containing 60.8% Fe with 51% Fe recovery. In order to enhance the recovery of the iron oxide minerals, fine magnetite, colloidal magnetite and oleate colloidal magnetite were used as the coating material. When subjected to magnetic separation, the coated ore produces an iron concentrate containing 60.2% Fe with an enhanced recovery of56%. The AFM studies indicate that the coagulation of hematite particles with the oleate colloidal magnetite facilitates the higher recovery of iron particles from the low grade BHJ iron ore under appropriate conditions.
文摘毛里塔尼亚粉状(+5.0 mm 22.10%)酸性铁矿石铁品位58.65%,硫、磷含量极低,主要杂质成分为硅,铁在各粒级没有明显的富集现象。为确定该矿石的选矿工艺,进行了实验室试验和工业生产试验。结果表明,在磨矿细度-0.074 mm68.75%、强磁选磁感应强度为1.0 T的条件下,可获得铁品位64.09%、铁回收率92.18%的铁精矿;采用闭路磨矿—弱磁选—2次强磁粗选流程进行工业生产试验,可获得产率85.10%、铁品位63.54%、铁回收率92.68%的总精矿,铁品位28.68%的尾矿可作为铁质校正原料销售至周边水泥厂,实现资源的综合利用。