Cultivable magnetotactic bacteria(MTB) in laboratory can provide sufficient samples for molecular microbiological and magnetic studies.However,a cold-stored MTB strain,such as Magnetospirillum magneticum AMB-1,often l...Cultivable magnetotactic bacteria(MTB) in laboratory can provide sufficient samples for molecular microbiological and magnetic studies.However,a cold-stored MTB strain,such as Magnetospirillum magneticum AMB-1,often loses its ability to synthesize magnetosomes and consequently fails to sense the external magnetic field.It is therefore important to quickly recover vigorous bacteria cells that highly capable of magnetosome producing.In this study,a modified capillary magnetic separation system was designed to recover a deteriorating strain of Magnetospirillum magneticum AMB-1 that long-term cold-stored in a refrigerator.The results show that all cells obtained after a 3-cycle treatment were vigorous and had the ability to produce magnetosomes.Moreover,the 3rd-cycle recovered cells were able to form more magnetosome crystals.Compared with the colony formation method,this new method is time-saving,easily operated,and more efficient for recovering vigorous MTB cells.展开更多
Based on analysis of gene structure of mamXY operon in Magnetospirillum gryphiswaldense strain MSR-1,we constructed a mamZ deletion mutant strain(ΔmamZ)and four complemented strains with different mamZ fragment lengt...Based on analysis of gene structure of mamXY operon in Magnetospirillum gryphiswaldense strain MSR-1,we constructed a mamZ deletion mutant strain(ΔmamZ)and four complemented strains with different mamZ fragment lengths.Various cell phenotypic and physiological parameters were evaluated and compared among the wild-type(WT),mutant,and complemented strains.Cell growth rates were not notably different;however,magnetic response(Cmag)and iron uptake ability were significantly lower inΔmamZ.High-resolution transmission electron microscopy(HR-TEM)showed that magnetosomes inΔmamZ were small and irregular,and rock magnetic measurements suggested that they contained immature particles.In comparison to WT of MSR-1,intracellular iron content ofΔmamZ and the complemented strains cultured with 20mmol/L iron source was similar or slightly higher.The complemented strains were unable to synthesize mature or normal amounts of magnetosomes,apparently because of abnormal expression of the transmembrane domain of MamZ protein.Real-time reverse transcription polymerase chain reaction(RTqPCR)analysis showed that relative transcription levels of mamX and ftsZ-like genes inΔmamZ were higher at 18 h than at 12 h,suggesting that MamXY proteins play cooperative functional roles in the magnetosome maturation process.Transcription level of mms6 was significantly upregulated inΔmamZ(incubated at 12 h)and the complemented strains(incubated at 12 and 18 h),refl ecting possible interaction between MamXY and Mms6 proteins during magnetosome biosynthesis.These findings,taken together,demonstrate the essential role of MamZ in the magnetosome maturation process in MSR-1.展开更多
Magnetospirillum magneticum strain AMB-1 belongs to the family of magnetotactic bacteria. It possesses a magnetosome chain aligning, with the assistance of cytoskeleton filaments MamK, along the long axis of the spira...Magnetospirillum magneticum strain AMB-1 belongs to the family of magnetotactic bacteria. It possesses a magnetosome chain aligning, with the assistance of cytoskeleton filaments MamK, along the long axis of the spiral cells. Most fresh M. magneticum AMB-1 cells exhibit spiral morphology. In addition, other cell shapes such as curved and spherical were also observed in this organism. Interestingly, the spherical cell shape increased steadily with prolonged incubation time. As the actin-like cytoskeleton protein MreB is involved in maintenance of cell shapes in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis, the correlation between MreB protein levels and cell shape was investigated in this study. Immunoblotting analysis showed that the quantity of MreB decreased when the cell shape changed along with incubation time. As an internal control, the quantity of MamA was not obviously changed under the same conditions. Cell shape directs cell-wall synthesis during growth and division. MreB is required for maintaining the cell shape. Thus, MreB might play an essential role in maintaining the spiral shape of M. magneticum AMB-1 cells.展开更多
Magnetotactic bacteria reside in sediments and stratified water columns.They are named after their ability to synthesize internal magnetic particles that allow them to align and swim along the Earth’s magnetic field ...Magnetotactic bacteria reside in sediments and stratified water columns.They are named after their ability to synthesize internal magnetic particles that allow them to align and swim along the Earth’s magnetic field lines.Here,we show that two magnetotactic species,Magnetospirillum magneticum strain AMB-1 and Magnetospirillum gryphiswaldense strain MSR-1,are electroactive.Both M.magneticum and M.gryphiswaldense were able to generate current in microbial fuel cells with maximum power densities of 27 and 11μW/m^(2),respectively.In the presence of the electron shuttle resazurin both species were able to reduce the crystalline iron oxide hematite(Fe_(2)O_(3)).In addition,M.magneticum could reduce poorly crystalline iron oxide(FeOOH).Our study adds M.magneticum and M.gryphiswaldense to the growing list of known electroactive bacteria,and implies that electroactivity might be common for bacteria within the Magnetospirillum genus.展开更多
A magnetosome deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 transposon mutagenesis, and a 5045-bp fragment flanking mini-Tn5 in NM4 was cloned by Anchored PCR. Sequencing analy...A magnetosome deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 transposon mutagenesis, and a 5045-bp fragment flanking mini-Tn5 in NM4 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved six putative open reading frames (ORFs); the mini-Tn5 was inserted into ORF4. Functional complementary test indicated that the 5045-bp fragment was required for biosynthesis of mag-netosomes in M. gryphiswaldense MSR-1. The protein encoded by ORF4 had 25% of identity with the chemotaxis protein CheYIII of Caulobacter crescentus CB15, and the protein encoded by ORF4 contained a conserved signal receiver domain that can receive the signal from the sensor partner of the bacterial two-component systems. It was suggested that the protein en-coded by ORF4 may take part in the signal transduction relating to biosynthesis of magneto-somes.展开更多
The magnetic properties of magnetosome magnetite are of interdisciplinary interest because magnetosomes are potential carriers of natural remanent magnetization and paleoenvironment, as well as novel nano-biomaterials...The magnetic properties of magnetosome magnetite are of interdisciplinary interest because magnetosomes are potential carriers of natural remanent magnetization and paleoenvironment, as well as novel nano-biomaterials in biotechnological and biomedical applications. We carried out magnetic and electron transmission microscopy analyses of fresh Magnetospirillum magneticum AMB-1 whole cells and isolated magnetosomes. Results revealed that AMB-1 synthesized single-domain magnetite magneto-somes, which are arranged in the form of linear fragmental chain. The distinct differences of magnetic properties between these two samples can be faithfully interpreted in terms of spatial arrangement of magnetosomes and magnetostatic interaction. For the whole cells, the strong intra-chain interactions and weak inter-chain interactions generate behaviors of non-interacting uniaxial single-domain particles. Its δ-ratio is 3.0 and passes the Moskowitz test. In contrast, the isolated magnetosome sample has reduced values of coercivity and δ-ratio (1.5), due to increasing three-dimensional magnetostatic interactions and collapse of magneto-some chains. These observations provide useful insights into applications of the biogenic magnetite (magnetosomes) in magnetic nano-materials and magnetofossils in the paleomagnetic and environmental magnetism.展开更多
A magnetosome-deleted mutant NM21 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 lacZ2 transposon mutagenesis, and a 3073-bp fragment flanking mini-Tn5 lacZ2 in NM21 was cloned by Anchored PCR. Se...A magnetosome-deleted mutant NM21 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 lacZ2 transposon mutagenesis, and a 3073-bp fragment flanking mini-Tn5 lacZ2 in NM21 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved three putative ORFs; the mini-Tn5 lacZ2 was inserted into ORF1. Functional complementary test indicated that the 3073-bp fragment was required for biosynthesis of magnetosomes in M. gryphiswaldense MSR-1. The majority of proteins, which had homology with the protein encoded by ORF1, were the cation transporter. Transmembrane domain analysis showed that the protein encoded by ORF1 contained four trans-membrane domains. It may be a transmembrane protein. The protein encoded by ORF1 contained two putative conserved domains: COG0053 and PRK09509. The MMT1 and FieF, containing conserved do-mains COG0053 and PRK09509 too, were Fe2+ transporter (cation diffusion facilitator superfamily). It was suggested that the protein encoded by ORF1 might take part in the magnetosomes biosynthesis as Fe2+ transporter.展开更多
基金Supported by the Natural Science Foundation of Shandong Province,China(No.2006ZRB01973)the National Natural Science Foundation of China(Nos.40821091,40325011)
文摘Cultivable magnetotactic bacteria(MTB) in laboratory can provide sufficient samples for molecular microbiological and magnetic studies.However,a cold-stored MTB strain,such as Magnetospirillum magneticum AMB-1,often loses its ability to synthesize magnetosomes and consequently fails to sense the external magnetic field.It is therefore important to quickly recover vigorous bacteria cells that highly capable of magnetosome producing.In this study,a modified capillary magnetic separation system was designed to recover a deteriorating strain of Magnetospirillum magneticum AMB-1 that long-term cold-stored in a refrigerator.The results show that all cells obtained after a 3-cycle treatment were vigorous and had the ability to produce magnetosomes.Moreover,the 3rd-cycle recovered cells were able to form more magnetosome crystals.Compared with the colony formation method,this new method is time-saving,easily operated,and more efficient for recovering vigorous MTB cells.
基金Supported by the National Natural Science Foundation of China(No.31270093)the Innovation Team of Scientific Research Platform of Anhui Province(No.KJ2015TD001)the Open Project Program of the Collaborative Innovation Center for Modern Bio-manufacture,Anhui University(No.BM2015010)。
文摘Based on analysis of gene structure of mamXY operon in Magnetospirillum gryphiswaldense strain MSR-1,we constructed a mamZ deletion mutant strain(ΔmamZ)and four complemented strains with different mamZ fragment lengths.Various cell phenotypic and physiological parameters were evaluated and compared among the wild-type(WT),mutant,and complemented strains.Cell growth rates were not notably different;however,magnetic response(Cmag)and iron uptake ability were significantly lower inΔmamZ.High-resolution transmission electron microscopy(HR-TEM)showed that magnetosomes inΔmamZ were small and irregular,and rock magnetic measurements suggested that they contained immature particles.In comparison to WT of MSR-1,intracellular iron content ofΔmamZ and the complemented strains cultured with 20mmol/L iron source was similar or slightly higher.The complemented strains were unable to synthesize mature or normal amounts of magnetosomes,apparently because of abnormal expression of the transmembrane domain of MamZ protein.Real-time reverse transcription polymerase chain reaction(RTqPCR)analysis showed that relative transcription levels of mamX and ftsZ-like genes inΔmamZ were higher at 18 h than at 12 h,suggesting that MamXY proteins play cooperative functional roles in the magnetosome maturation process.Transcription level of mms6 was significantly upregulated inΔmamZ(incubated at 12 h)and the complemented strains(incubated at 12 and 18 h),refl ecting possible interaction between MamXY and Mms6 proteins during magnetosome biosynthesis.These findings,taken together,demonstrate the essential role of MamZ in the magnetosome maturation process in MSR-1.
基金Supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (Research and Applications of Marine Functional Genomics)the Haiwaijie chuxuezhe-Fund of the Chinese Academy of Sciences (2006-1-15)+1 种基金the fund from MATHAB (No. MH200804)a CNRS scholarship for FZ, and National Natural Science Foundation of China (No. 40776094)
文摘Magnetospirillum magneticum strain AMB-1 belongs to the family of magnetotactic bacteria. It possesses a magnetosome chain aligning, with the assistance of cytoskeleton filaments MamK, along the long axis of the spiral cells. Most fresh M. magneticum AMB-1 cells exhibit spiral morphology. In addition, other cell shapes such as curved and spherical were also observed in this organism. Interestingly, the spherical cell shape increased steadily with prolonged incubation time. As the actin-like cytoskeleton protein MreB is involved in maintenance of cell shapes in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis, the correlation between MreB protein levels and cell shape was investigated in this study. Immunoblotting analysis showed that the quantity of MreB decreased when the cell shape changed along with incubation time. As an internal control, the quantity of MamA was not obviously changed under the same conditions. Cell shape directs cell-wall synthesis during growth and division. MreB is required for maintaining the cell shape. Thus, MreB might play an essential role in maintaining the spiral shape of M. magneticum AMB-1 cells.
基金the Carlsberg Foundation Distinguished Fellowships(No.CF18-0084)the Research Grant(No.00023110)from VILLUM FONDENthe Independent Research Fund Denmark(DFF-Project 1 No.1032-00028B).
文摘Magnetotactic bacteria reside in sediments and stratified water columns.They are named after their ability to synthesize internal magnetic particles that allow them to align and swim along the Earth’s magnetic field lines.Here,we show that two magnetotactic species,Magnetospirillum magneticum strain AMB-1 and Magnetospirillum gryphiswaldense strain MSR-1,are electroactive.Both M.magneticum and M.gryphiswaldense were able to generate current in microbial fuel cells with maximum power densities of 27 and 11μW/m^(2),respectively.In the presence of the electron shuttle resazurin both species were able to reduce the crystalline iron oxide hematite(Fe_(2)O_(3)).In addition,M.magneticum could reduce poorly crystalline iron oxide(FeOOH).Our study adds M.magneticum and M.gryphiswaldense to the growing list of known electroactive bacteria,and implies that electroactivity might be common for bacteria within the Magnetospirillum genus.
基金This work was supported by the Chinese National Programs for High Technology Research and Development(Grant No.2001AA218041).
文摘A magnetosome deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 transposon mutagenesis, and a 5045-bp fragment flanking mini-Tn5 in NM4 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved six putative open reading frames (ORFs); the mini-Tn5 was inserted into ORF4. Functional complementary test indicated that the 5045-bp fragment was required for biosynthesis of mag-netosomes in M. gryphiswaldense MSR-1. The protein encoded by ORF4 had 25% of identity with the chemotaxis protein CheYIII of Caulobacter crescentus CB15, and the protein encoded by ORF4 contained a conserved signal receiver domain that can receive the signal from the sensor partner of the bacterial two-component systems. It was suggested that the protein en-coded by ORF4 may take part in the signal transduction relating to biosynthesis of magneto-somes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40821091 and 40325011)Hundred Talents Program of the Chi-nese Academy of Sciences and Marie-Curie Fellowship (IIF) Return Phase of (Grant No. MIF1-CT-2005-007555)
文摘The magnetic properties of magnetosome magnetite are of interdisciplinary interest because magnetosomes are potential carriers of natural remanent magnetization and paleoenvironment, as well as novel nano-biomaterials in biotechnological and biomedical applications. We carried out magnetic and electron transmission microscopy analyses of fresh Magnetospirillum magneticum AMB-1 whole cells and isolated magnetosomes. Results revealed that AMB-1 synthesized single-domain magnetite magneto-somes, which are arranged in the form of linear fragmental chain. The distinct differences of magnetic properties between these two samples can be faithfully interpreted in terms of spatial arrangement of magnetosomes and magnetostatic interaction. For the whole cells, the strong intra-chain interactions and weak inter-chain interactions generate behaviors of non-interacting uniaxial single-domain particles. Its δ-ratio is 3.0 and passes the Moskowitz test. In contrast, the isolated magnetosome sample has reduced values of coercivity and δ-ratio (1.5), due to increasing three-dimensional magnetostatic interactions and collapse of magneto-some chains. These observations provide useful insights into applications of the biogenic magnetite (magnetosomes) in magnetic nano-materials and magnetofossils in the paleomagnetic and environmental magnetism.
基金Supported by National Natural Science Foundation of China (Grant No. 30570023)Scientific Research Project of Huaibei City, Anhui Province (Grant No. 070114)
文摘A magnetosome-deleted mutant NM21 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 lacZ2 transposon mutagenesis, and a 3073-bp fragment flanking mini-Tn5 lacZ2 in NM21 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved three putative ORFs; the mini-Tn5 lacZ2 was inserted into ORF1. Functional complementary test indicated that the 3073-bp fragment was required for biosynthesis of magnetosomes in M. gryphiswaldense MSR-1. The majority of proteins, which had homology with the protein encoded by ORF1, were the cation transporter. Transmembrane domain analysis showed that the protein encoded by ORF1 contained four trans-membrane domains. It may be a transmembrane protein. The protein encoded by ORF1 contained two putative conserved domains: COG0053 and PRK09509. The MMT1 and FieF, containing conserved do-mains COG0053 and PRK09509 too, were Fe2+ transporter (cation diffusion facilitator superfamily). It was suggested that the protein encoded by ORF1 might take part in the magnetosomes biosynthesis as Fe2+ transporter.