对于一个特定的模式识别问题,表达和识别模式的特征具有不同的形式,它们在物理意义上是完全不同的,而且在数量级具有很大差别。该文提出了一种基于马氏距离的线性判别分析分类算法,选取判别函数为马氏距离,可以适用于具有不同类型特征...对于一个特定的模式识别问题,表达和识别模式的特征具有不同的形式,它们在物理意义上是完全不同的,而且在数量级具有很大差别。该文提出了一种基于马氏距离的线性判别分析分类算法,选取判别函数为马氏距离,可以适用于具有不同类型特征值的分类问题。将该算法应用于UC I中C red it-A、C red it-G、Iris和Veh ic le四个数据库的分类,并采用K次交叉验证方法进行实验。从实验结果中可知,与ENTROPY算法和C4.5(8)算法分类效果相比较,该文所提出的线性判别分析算法计算简单,识别率较高,是一种实际可行的分类算法。展开更多
文摘对于一个特定的模式识别问题,表达和识别模式的特征具有不同的形式,它们在物理意义上是完全不同的,而且在数量级具有很大差别。该文提出了一种基于马氏距离的线性判别分析分类算法,选取判别函数为马氏距离,可以适用于具有不同类型特征值的分类问题。将该算法应用于UC I中C red it-A、C red it-G、Iris和Veh ic le四个数据库的分类,并采用K次交叉验证方法进行实验。从实验结果中可知,与ENTROPY算法和C4.5(8)算法分类效果相比较,该文所提出的线性判别分析算法计算简单,识别率较高,是一种实际可行的分类算法。