Based on the boundary condition of field engineering, numerical simulations of28 conditions of existing diffusers of 3 structure types were investigated by ComputationalFluid Dynamics software package, and there were ...Based on the boundary condition of field engineering, numerical simulations of28 conditions of existing diffusers of 3 structure types were investigated by ComputationalFluid Dynamics software package, and there were the problems of larger structure resistanceand lower diffusing efficiency of these diffusers by analysis of CFD results.Thestructure outlines of the energy-saving diffuser were constructed by the application ofstream function and potential function superimposing.On the basis of numerical simulationsof energy-saving diffusers of 5 area-enlarging ratios, structural resistances and diffusingefficiencies of 5 energy-saving diffusers were comparatively analyzed, and therange from 2.00 to 2.31 of the rational area-enlarging ratio of energy-saving diffusers wasderived.The optimization area-enlarging ratio of the energy-saving diffuser was presently2.28 through comparable analysis.From the above, the results show that the coefficient ofperformance of the energy-saving diffuser is better than 3 existing diffusers.展开更多
The main fan diffuser in a coal mine is an energy-recycling equipment with a dynamic energy loss for the main fan. Engineering practices and related researches show that the body structures of three types of diffusers...The main fan diffuser in a coal mine is an energy-recycling equipment with a dynamic energy loss for the main fan. Engineering practices and related researches show that the body structures of three types of diffusers are irrational. To solve the problem, an energy-saving diffuser is designed on the basis of the velocity potential theory. Under conditions of inlet velocity from 7 m/s to 32 m/s, 7 condition experiments using the energy-saving diffuser of 2.31 AER (area-enlarging ratio) and 5 condi- tion experiments using the energy-saving diffuser of 2.00 AER were conducted. Through a comparative analysis of the experi- ments, the results show that the COP (coefficient of performance) of the energy-saving diffuser of 2.31 AER is better than that of the energy-saving diffuser of 2.00 AER.展开更多
As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study ai...As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.展开更多
下刚果—刚果扇盆地为深水浊积岩油气勘探成功的典型含油气盆地。盆内广泛发育的浊积水道为重要储层类型,蕴含丰富的油气资源。前人从构造和沉积等角度对深水水道沉积模式及控制因素进行了大量研究,取得了长足进展(Henry et al.,2019;...下刚果—刚果扇盆地为深水浊积岩油气勘探成功的典型含油气盆地。盆内广泛发育的浊积水道为重要储层类型,蕴含丰富的油气资源。前人从构造和沉积等角度对深水水道沉积模式及控制因素进行了大量研究,取得了长足进展(Henry et al.,2019;陈华等,2021)。然而也有大量实钻资料表明水道体系内部砂体期次的沉积发育和叠置关系非常复杂,储层非均质性很强(张文彪等,2017)。展开更多
基金Supported by the National Natural Science Foundation of China(50974060)the Scientific Research Fund of Hunan Provincial Education Department(09CY014)the Doctoral Fund of Hunan University of Science and Technology
文摘Based on the boundary condition of field engineering, numerical simulations of28 conditions of existing diffusers of 3 structure types were investigated by ComputationalFluid Dynamics software package, and there were the problems of larger structure resistanceand lower diffusing efficiency of these diffusers by analysis of CFD results.Thestructure outlines of the energy-saving diffuser were constructed by the application ofstream function and potential function superimposing.On the basis of numerical simulationsof energy-saving diffusers of 5 area-enlarging ratios, structural resistances and diffusingefficiencies of 5 energy-saving diffusers were comparatively analyzed, and therange from 2.00 to 2.31 of the rational area-enlarging ratio of energy-saving diffusers wasderived.The optimization area-enlarging ratio of the energy-saving diffuser was presently2.28 through comparable analysis.From the above, the results show that the coefficient ofperformance of the energy-saving diffuser is better than 3 existing diffusers.
文摘The main fan diffuser in a coal mine is an energy-recycling equipment with a dynamic energy loss for the main fan. Engineering practices and related researches show that the body structures of three types of diffusers are irrational. To solve the problem, an energy-saving diffuser is designed on the basis of the velocity potential theory. Under conditions of inlet velocity from 7 m/s to 32 m/s, 7 condition experiments using the energy-saving diffuser of 2.31 AER (area-enlarging ratio) and 5 condi- tion experiments using the energy-saving diffuser of 2.00 AER were conducted. Through a comparative analysis of the experi- ments, the results show that the COP (coefficient of performance) of the energy-saving diffuser of 2.31 AER is better than that of the energy-saving diffuser of 2.00 AER.
文摘As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.
文摘下刚果—刚果扇盆地为深水浊积岩油气勘探成功的典型含油气盆地。盆内广泛发育的浊积水道为重要储层类型,蕴含丰富的油气资源。前人从构造和沉积等角度对深水水道沉积模式及控制因素进行了大量研究,取得了长足进展(Henry et al.,2019;陈华等,2021)。然而也有大量实钻资料表明水道体系内部砂体期次的沉积发育和叠置关系非常复杂,储层非均质性很强(张文彪等,2017)。