Large amounts of crop stalks left in the field as a result of conservation agriculture cause blockage during no-till planting.To solve this issue,pure waterjet was used to cut off the maize stalks so that the rear fur...Large amounts of crop stalks left in the field as a result of conservation agriculture cause blockage during no-till planting.To solve this issue,pure waterjet was used to cut off the maize stalks so that the rear furrow opener could pass through without blockage.In this investigation,an experimental study on depth of cut,which was the main performance indicator of pure waterjet on cutting maize stalks,was presented.A full factorial design with 200 tests was implemented with respect to three operation parameters,that is traverse speed,waterjet pressure,and standoff distance were considered as variables.An analysis of variance(ANOVA)was carried out in order to determine the statistical significance of individual operation parameters.Using multilinear stepwise regression analysis,a model to predict the cut of depth from the predicted pure waterjet operation to cut maize stalks was then developed.All three operation parameters significantly influenced the cutting performance.Moreover,the results indicated that depth of cut increased with the increase of waterjet pressure,the decrease of traverse speed,and decrease in standoff distance.Waterjet pressure provided major contribution to depth of cut,followed by traverse speed,then standoff distance,which was demonstrated by both ANOVA and regression analysis.The experimental results showed that when the standoff distance was closer than 10 mm and waterjet pressure was 280 MPa,all maize stalks specimen could be cutoff thoroughly.With the consideration of field operating conditions,waterjet pressure of 280 MPa or higher and 10 mm to 15 mm standoff distance were recommended for maize stalks cutting.This analysis provided a realistic approach for the optimization of the ultra-high pressure pure waterjet parameters in maize stalks cutting,which could be used to relieve the occurrence of straw blockage in no-till planting.展开更多
Maize stalk rot reduces grain yield and quality.Information about the genetics of resistance to maize stalk rot could help breeders design effective breeding strategies for the trait.Genomic prediction may be a more e...Maize stalk rot reduces grain yield and quality.Information about the genetics of resistance to maize stalk rot could help breeders design effective breeding strategies for the trait.Genomic prediction may be a more effective breeding strategy for stalk-rot resistance than marker-assisted selection.We performed a genome-wide association study(GWAS)and genomic prediction of resistance in testcross hybrids of 677 inbred lines from the Tuxpe?o and non-Tuxpe?o heterotic pools grown in three environments and genotyped with 200,681 single-nucleotide polymorphisms(SNPs).Eighteen SNPs associated with stalk rot shared genomic regions with gene families previously associated with plant biotic and abiotic responses.More favorable SNP haplotypes traced to tropical than to temperate progenitors of the inbred lines.Incorporating genotype-by-environment(G×E)interaction increased genomic prediction accuracy.展开更多
[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam expl...[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity.展开更多
To study the mechanism of potassium (K) application on improvement of maize resistance to stalk rot at cellular level, scanning electron microscope and transmission electron microscope were used to observe the effe...To study the mechanism of potassium (K) application on improvement of maize resistance to stalk rot at cellular level, scanning electron microscope and transmission electron microscope were used to observe the effect of K on the ultrastructure of maize stalk pith tissue and young root tip cell influenced by K and pathogen. In K deficient treatment, parenchyma cells of stalk pith had abnormal structure, and the cell wall between upper and lower adjacent cell was damaged, resulting in the loss of connections between vascular cells and insufficient supporting capacity. However, an improved K nutrition helped to keep a quite tight arrangement of root cell with thick cell wall, and prevent the invasion of pathogen effectively. Moreover, K treated root cell had abundant golgi apparatus, which could excrete large amount of secretions to degrade mycelium. Papillary and highly electronic intensity dot were accumulated at the invading point to prevent the deveJopment of the mycelium. Improved K nutrition could increase the resistant ability of maize plant to stalk rot, through keeping cell structure stability, preventing the expansion of intracellular space to reduce the chances of pathogen invasions, and through reinforcing cell wall and formation of intercellular and intracellular material to restrict further development of pathogen in host cell.展开更多
Maize is one of the major crops in China, but maize stalk rot occurs nationwide and has become one of the major challenges in maize production in China. In order to find an environment-friendly and feasible technology...Maize is one of the major crops in China, but maize stalk rot occurs nationwide and has become one of the major challenges in maize production in China. In order to find an environment-friendly and feasible technology to control this disease, a Trichoderma-based biocontrol agent was selected. Forty-eight strains with various inhibition activities to Fusarium graminearum, and Fusarium verticillioides were tested. A group of Trichoderma strains(DLY31, SG3403, DLY1303 and GDFS1009) were found to provide an inhibition rate to pathogen growth in vitro of over 70%. These strains also prevented pathogen infection over 65% and promoted the maize seedling growth for the main root in vivo by over 50%. Due to its advantage in antifungal activity against pathogens and promotion activity to maize, Trichoderma asperellum GDSF1009 was selected as the most promising strain of the biocontrol agent in the Trichoderma spectrum. Pot experiments showed that the Trichoderma agent at 2–3 g/pot could achieve the best control of seedling stalk rot and promotion of maize seedling growth. In the field experiments, 8–10 g/hole was able to achieve over 65% control to stalk rot, and yield increased by 2–11%. In the case of natural morbidity, the control efficiency ranged from 27.23 to 48.84%, and the rate of yield increase reached 11.70%, with a dosage of Trichoderma granules at 75 kg ha^-1. Based on these results, we concluded that the Trichoderma agent is a promising biocontrol approach to stalk rot in maize.展开更多
Maize(Zea mays L.)stalk rot is a devastating disease worldwide,causing severe yield losses.Although previous studies have focused on the genetic dissection of maize resistance to stalk rot,the mechanisms of resistance...Maize(Zea mays L.)stalk rot is a devastating disease worldwide,causing severe yield losses.Although previous studies have focused on the genetic dissection of maize resistance to stalk rot,the mechanisms of resistance remain largely unknown.We used a comparative proteomics approach to identify candidate proteins associated with stalk rot resistance.Statistical analyses revealed 763 proteins differentially accumulated between Fusarium graminearum and mock-inoculated plants.Among them,the antioxidant protein ZmPrx5,which was up-accumulated in diseased plants,was selected for further study.ZmPrx5 transcripts were present in root,stalk,leaf,ear,and reproductive tissues.The expression of ZmPrx5 in three inbred lines increased significantly upon F.graminearum infection.ZmPrx5 was localized in the cytoplasm.Compared to control plants,maize plants overexpressing ZmPrx5 showed increased resistance to F.graminearum infection,and ZmPrx5 mutant plants were more susceptible than wild-type plants.Defense-associated pathways including plant–pathogen interactions,phenylalanine metabolism,and benzoxazinoid and flavonoid biosynthesis were suppressed in ZmPrx5 homozygous mutant plants compared with wild-type plants.We suggest that ZmPrx5 positively regulates resistance against stalk rot in maize,likely through defense-oriented transcriptome reprogramming.These results lay a foundation for further research on the roles of Prx5 subfamily proteins in resistance to plant fungal diseases,and provide a potential genetic resource for breeding disease-resistance maize lines.展开更多
Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that...Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that maize inbred line Qi319 is highly resistant to SCR but susceptible to MSR-2,while inbred line 1145 is highly resistant to MSR-2 but susceptible to SCR.The SCR resistant gene(RppQ) in Qi319 and MSR-2 resistant gene(Rpi1) in 1145 have been mapped on chromosome 10 and 4 respectively.In this research,through marker-assisted selection(MAS) with the molecular markers,bnlg1937 tightly linked to Rpi1 and phi041 tightly linked to RppQ,pyramid breeding of the two kinds of disease resistant genes were carried out from the year of 2003 to 2007.Two homozygotic inbred lines of F5 generation,DR94-1-1-1 and DR36-1-1-1 were identified.MAS result suggested DR94-1-1-1 and DR36-1-1-1 contained the two resistance genes RppQ and Rpi1.Field inoculation tests confirmed their high resistance to the two diseases.In addition,field investigation indicated that the two selected inbred lines,particularly DR94-1-1-1,had excellent agronomic traits such as plant height,ear height and yield-relating traits including ear length,ear diameter,ear weight,kernels per ear,kernels per row and kernel weight per ear.The two selected inbred lines DR94-1-1-1 and DR36-1-1-1 can either be directly developed into commercial variety or used as immediate donors of SCR and MSR resistance breeding programs in maize.展开更多
Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between phy...Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition.展开更多
Chopped and spread maize stalks improve soil structure and fertility. However, because of the absence of research on airflow distribution in the chopping chamber, improvement of the spreading uniformity of chopped sta...Chopped and spread maize stalks improve soil structure and fertility. However, because of the absence of research on airflow distribution in the chopping chamber, improvement of the spreading uniformity of chopped stalks has been limited. Therefore, in this study, computational fluid dynamics (CFD) technology was applied to analyze the influence of structural and operational parameters of the chopping and spreading machine on the velocity, pressure, and turbulent kinetic energy distribution of airflow in the chopping chamber. The experimental factors considered were the relative position angle (RPA) between the collecting-chopping shaft and the sliding-supporting shaft, working velocity (WV) of the chopping chamber, and rotational velocity of the collecting-chopping blade (RVCCB). The results revealed that RPA and RVCCB had a significant influence on the maximum negative pressure in the inlet (MNPI), the proportion of negative pressure area at inlet (PNPAI), and the maximum pressure drop at inlet and outlet (MPDIO). Additionally, RVCCB had a strong influence on the maximum velocity, average velocity, and velocity variation coefficient of airflow at the outlet. Moreover, maximum turbulence (MT) and maximum turbulent kinetic energy dissipation rate (MTKEDR) showed a positive relationship with RVCCB. To determine the values of RPA, RVCCB, and WV, a multivariate parameters optimization regression model was constructed, which yielded the optimal values of 15°, 1800 r/min, and 0.50 m/s, respectively. Subsequently, a hyperbolic spiral-type guiding shell with an arc length of 90° was designed to enhance the uniform distribution of airflow in the chopping chamber. Finally, a validation experiment of airflow distribution was conducted. The results showed that the velocity difference between the simulation and the validation experiment was less than 15%, indicating the accuracy of CFD simulation, and the spreading uniformities of the chopped stalks were better than national standards. These findings can serve as technical and theoretical support for the design and optimization of chopping and spreading machines.展开更多
In this study,maize stalk tegument separated from the maize pith was crushed to obtain the fiber.The cross-linking maize starch adhesives considering four main factors(water content,gelatinization temperature,NaOH as ...In this study,maize stalk tegument separated from the maize pith was crushed to obtain the fiber.The cross-linking maize starch adhesives considering four main factors(water content,gelatinization temperature,NaOH as gelatinization agent and Na2B4O7·10H2O as cross-linking agent)with three levels were prepared based on an orthogonal test scheme L9(34)in order to increase the water-resisting property and the bonding strength of the common maize starch adhesives.The bonding properties of maize starch adhesives were characterized using shearing strength under compression loading.Physical models of fiber reinforced composites were established according to the microstructure analysis of the four species of insects’elytra including Protaetia orentalis,Copris ochus Motschulsky,Anoplophora chinensis and Cytister bengalensis Aube,which will provide the biomimetic models for the biomimetic laminated boards.The maize stalk fiber biomimetic laminated boards were prepared based on the structural models of the elytra material.The flexural strength and flexural elastic modulus of the biomimetic boards were examined.The results showed that the flexural strengths of the single layer jute fiber,-reinforced maize stalk fiber boards and the dual layer jute fiber reinforced maize stalk fiber boards are higher than those of the common maize stalk fiber boards and the other three groups of jute fiber hybrid reinforced stalk fiber boards because of the biomimetic laminated design.展开更多
Sugarcane borer, Diatraea saccharalis (E), is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the US mid- south region. Resistance development in target pest...Sugarcane borer, Diatraea saccharalis (E), is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the US mid- south region. Resistance development in target pest populations is a major threat to the sustainable use of Bt crops. In our field trials in 2009, a significant number of live borers and plant injury fi'om D. saccharalis were observed in an experimental SmartStaxTM maize line. The objective of this study was to assess the relative susceptibility of two field popula- tions ofD. saccharalis collected from non-Bt and Bt maize plants containing SmartStaxTM traits to five individual Cry proteins. The five Bt proteins included two proteins (Cry 1A. 105 and Cry2Ab2) that were expressed in SmartStaxTM maize plants and three other common Bt proteins (Cry 1Aa, Cry 1Ab and Cry l Ac) that were not produced in SmartStaxTM. Larval mortality and growth inhibition on Bt diet of the fourth generation after field collections were evaluated 7 days after release of neonates on the diet surface. The laboratory bioassays showed that 50% lethal concentration (LCs0) values for CrylA. 105 and Cry2Ab2 for the population originated from Bt plants were 3.55- and 1.34-fold greater, respectively, than those of the population collected from non-Bt plants. In contrast, relative to the popula- tion from non-Bt plants, the LCs0 of the population sampled from Bt plants were 3.85-, 2.5- and 1.64-fold more sensitive to CrylAa, CrylAb and CrylAc, respectively. The re- sults did not provide clear evidence to conclude that the observed field survival of D. saccharalis on Bt plants was associated with increased levels of resistance.展开更多
No-till planting method is widely used for maize-wheat two-crops-a-year area in the North China Plain.However,cruel soil conditions,especially the large number of maize stalks which are hard to cutoff covering,often c...No-till planting method is widely used for maize-wheat two-crops-a-year area in the North China Plain.However,cruel soil conditions,especially the large number of maize stalks which are hard to cutoff covering,often cause an unsatisfying planting quality.Based on the authors’previous investigation,ultrahigh-pressure(UHP)waterjet is capable to solve this problem and obtain qualified seedbeds.Thus,a UHP waterjet assisted furrow opener for no-till seeder was designed.Field tests showed that double-disc furrow openers worked well with UHP waterjet,since the sharpened disc blades could help to cut soil and residue,meanwhile,minimize soil disturbance.Response surface method(RSM)was used to investigate the relationship among forward speed,waterjet pressure,jet impingement angle and anti-blocking performance(stalks cutoff ratio and depth of soil cutting),and a Box-Behnken three-factor design was used to identify the optional operation parameters.A total of 17 combinations were conducted,and the results showed all three operation parameters significantly affected anti-blocking performance.Stalks cutoff ratio and depth of soil cutting increased with the increase of waterjet pressure,jet impingement angle,and decreased with the increase of forward speed.The optimization analysis indicated that when waterjet pressure was 267-280 MPa,jet impingement angle was 80.2°to 90.0°and forward speed was 4.00-4.42 km/h,the overall performance of UHP waterjet assisted double-disc furrow opener for no-till seeder was maximized.Stalks cutoff ratio could be above 95%and no blockage occurred.This study may provide a new approach and reference for the anti-blocking technology of no-tillage seeding.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture,China(Grant No.201503136).
文摘Large amounts of crop stalks left in the field as a result of conservation agriculture cause blockage during no-till planting.To solve this issue,pure waterjet was used to cut off the maize stalks so that the rear furrow opener could pass through without blockage.In this investigation,an experimental study on depth of cut,which was the main performance indicator of pure waterjet on cutting maize stalks,was presented.A full factorial design with 200 tests was implemented with respect to three operation parameters,that is traverse speed,waterjet pressure,and standoff distance were considered as variables.An analysis of variance(ANOVA)was carried out in order to determine the statistical significance of individual operation parameters.Using multilinear stepwise regression analysis,a model to predict the cut of depth from the predicted pure waterjet operation to cut maize stalks was then developed.All three operation parameters significantly influenced the cutting performance.Moreover,the results indicated that depth of cut increased with the increase of waterjet pressure,the decrease of traverse speed,and decrease in standoff distance.Waterjet pressure provided major contribution to depth of cut,followed by traverse speed,then standoff distance,which was demonstrated by both ANOVA and regression analysis.The experimental results showed that when the standoff distance was closer than 10 mm and waterjet pressure was 280 MPa,all maize stalks specimen could be cutoff thoroughly.With the consideration of field operating conditions,waterjet pressure of 280 MPa or higher and 10 mm to 15 mm standoff distance were recommended for maize stalks cutting.This analysis provided a realistic approach for the optimization of the ultra-high pressure pure waterjet parameters in maize stalks cutting,which could be used to relieve the occurrence of straw blockage in no-till planting.
基金funded by the CGIAR Research Program(CRP)on MAIZEthe USAID through the Accelerating Genetic Gains Supplemental Project(Amend.No.9 MTO 069033),and the One CGIAR Initiative on Accelerated Breeding+1 种基金funding from the governments of Australia,Belgium,Canada,China,France,India,Japan,the Republic of Korea,Mexico,the Netherlands,New Zealand,Norway,Sweden,Switzerland,the United Kingdom,the United States,and the World Banksupported by the China Scholarship Council。
文摘Maize stalk rot reduces grain yield and quality.Information about the genetics of resistance to maize stalk rot could help breeders design effective breeding strategies for the trait.Genomic prediction may be a more effective breeding strategy for stalk-rot resistance than marker-assisted selection.We performed a genome-wide association study(GWAS)and genomic prediction of resistance in testcross hybrids of 677 inbred lines from the Tuxpe?o and non-Tuxpe?o heterotic pools grown in three environments and genotyped with 200,681 single-nucleotide polymorphisms(SNPs).Eighteen SNPs associated with stalk rot shared genomic regions with gene families previously associated with plant biotic and abiotic responses.More favorable SNP haplotypes traced to tropical than to temperate progenitors of the inbred lines.Incorporating genotype-by-environment(G×E)interaction increased genomic prediction accuracy.
基金Supported by National Basic Research Program of China(2006CB708407 2009CB220005)+2 种基金National Natural Science Foun-dation of China (90610001 20871106)Program of 211 Projectfor Zhengzhou University from Ministry of Education~~
文摘[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity.
基金supported by the National Basic Research Program of China(973 Program,2007CB109306)the National Natural Science Foundation of China(30571018)+1 种基金the Natural Science Foundation of Beijing,China(6062025)the International Plant Nutrition Institute
文摘To study the mechanism of potassium (K) application on improvement of maize resistance to stalk rot at cellular level, scanning electron microscope and transmission electron microscope were used to observe the effect of K on the ultrastructure of maize stalk pith tissue and young root tip cell influenced by K and pathogen. In K deficient treatment, parenchyma cells of stalk pith had abnormal structure, and the cell wall between upper and lower adjacent cell was damaged, resulting in the loss of connections between vascular cells and insufficient supporting capacity. However, an improved K nutrition helped to keep a quite tight arrangement of root cell with thick cell wall, and prevent the invasion of pathogen effectively. Moreover, K treated root cell had abundant golgi apparatus, which could excrete large amount of secretions to degrade mycelium. Papillary and highly electronic intensity dot were accumulated at the invading point to prevent the deveJopment of the mycelium. Improved K nutrition could increase the resistant ability of maize plant to stalk rot, through keeping cell structure stability, preventing the expansion of intracellular space to reduce the chances of pathogen invasions, and through reinforcing cell wall and formation of intercellular and intracellular material to restrict further development of pathogen in host cell.
基金supported by the National Key Research and Development Program of China (2017YFD0200403)the Key International Intergove rnmental Scientific and Technological Innovation Cooperation Project, China (2017YFE0104900)+2 种基金the National Natural Science Foundation of China (31750110455, 31672072)the Agriculture Research System of Shanghai, China (201710)the earmarked fund for the China Agriculture Research System (CARS-02)
文摘Maize is one of the major crops in China, but maize stalk rot occurs nationwide and has become one of the major challenges in maize production in China. In order to find an environment-friendly and feasible technology to control this disease, a Trichoderma-based biocontrol agent was selected. Forty-eight strains with various inhibition activities to Fusarium graminearum, and Fusarium verticillioides were tested. A group of Trichoderma strains(DLY31, SG3403, DLY1303 and GDFS1009) were found to provide an inhibition rate to pathogen growth in vitro of over 70%. These strains also prevented pathogen infection over 65% and promoted the maize seedling growth for the main root in vivo by over 50%. Due to its advantage in antifungal activity against pathogens and promotion activity to maize, Trichoderma asperellum GDSF1009 was selected as the most promising strain of the biocontrol agent in the Trichoderma spectrum. Pot experiments showed that the Trichoderma agent at 2–3 g/pot could achieve the best control of seedling stalk rot and promotion of maize seedling growth. In the field experiments, 8–10 g/hole was able to achieve over 65% control to stalk rot, and yield increased by 2–11%. In the case of natural morbidity, the control efficiency ranged from 27.23 to 48.84%, and the rate of yield increase reached 11.70%, with a dosage of Trichoderma granules at 75 kg ha^-1. Based on these results, we concluded that the Trichoderma agent is a promising biocontrol approach to stalk rot in maize.
基金supported by the National Natural Science Foundation of China (U1804113, 31872872 and 31671675)the National Key Research and Development Program of China (2016YFD0102000)+2 种基金the Open Project Funding of the State Key Laboratory of Crop Stress Adaptation and Improvementthe 111 Project#D16014Shandong Provincial Natural Science Foundation (ZR2015CM034 and ZR2016CM30)
文摘Maize(Zea mays L.)stalk rot is a devastating disease worldwide,causing severe yield losses.Although previous studies have focused on the genetic dissection of maize resistance to stalk rot,the mechanisms of resistance remain largely unknown.We used a comparative proteomics approach to identify candidate proteins associated with stalk rot resistance.Statistical analyses revealed 763 proteins differentially accumulated between Fusarium graminearum and mock-inoculated plants.Among them,the antioxidant protein ZmPrx5,which was up-accumulated in diseased plants,was selected for further study.ZmPrx5 transcripts were present in root,stalk,leaf,ear,and reproductive tissues.The expression of ZmPrx5 in three inbred lines increased significantly upon F.graminearum infection.ZmPrx5 was localized in the cytoplasm.Compared to control plants,maize plants overexpressing ZmPrx5 showed increased resistance to F.graminearum infection,and ZmPrx5 mutant plants were more susceptible than wild-type plants.Defense-associated pathways including plant–pathogen interactions,phenylalanine metabolism,and benzoxazinoid and flavonoid biosynthesis were suppressed in ZmPrx5 homozygous mutant plants compared with wild-type plants.We suggest that ZmPrx5 positively regulates resistance against stalk rot in maize,likely through defense-oriented transcriptome reprogramming.These results lay a foundation for further research on the roles of Prx5 subfamily proteins in resistance to plant fungal diseases,and provide a potential genetic resource for breeding disease-resistance maize lines.
文摘Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that maize inbred line Qi319 is highly resistant to SCR but susceptible to MSR-2,while inbred line 1145 is highly resistant to MSR-2 but susceptible to SCR.The SCR resistant gene(RppQ) in Qi319 and MSR-2 resistant gene(Rpi1) in 1145 have been mapped on chromosome 10 and 4 respectively.In this research,through marker-assisted selection(MAS) with the molecular markers,bnlg1937 tightly linked to Rpi1 and phi041 tightly linked to RppQ,pyramid breeding of the two kinds of disease resistant genes were carried out from the year of 2003 to 2007.Two homozygotic inbred lines of F5 generation,DR94-1-1-1 and DR36-1-1-1 were identified.MAS result suggested DR94-1-1-1 and DR36-1-1-1 contained the two resistance genes RppQ and Rpi1.Field inoculation tests confirmed their high resistance to the two diseases.In addition,field investigation indicated that the two selected inbred lines,particularly DR94-1-1-1,had excellent agronomic traits such as plant height,ear height and yield-relating traits including ear length,ear diameter,ear weight,kernels per ear,kernels per row and kernel weight per ear.The two selected inbred lines DR94-1-1-1 and DR36-1-1-1 can either be directly developed into commercial variety or used as immediate donors of SCR and MSR resistance breeding programs in maize.
基金Supported by the National Natural Science Foundation of China Project(31770582)。
文摘Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition.
基金supported by Natural Science Foundation of Henan Province(Grant No.242300421560)Science and Technology Research Project of Henan(Grant No.232102110273)+2 种基金the Scientific Research Foundation for Advanced Talents of Henan University of Technology(Grant No.2022BS077)Training Plan of Young Backbone Teachers in Colleges and Universities in Henan Province(Grant No.2020GGJS088)the Cultivation Programme for Young Backbone Teachers in Henan University of Technology(Grant No.0503/21420191).
文摘Chopped and spread maize stalks improve soil structure and fertility. However, because of the absence of research on airflow distribution in the chopping chamber, improvement of the spreading uniformity of chopped stalks has been limited. Therefore, in this study, computational fluid dynamics (CFD) technology was applied to analyze the influence of structural and operational parameters of the chopping and spreading machine on the velocity, pressure, and turbulent kinetic energy distribution of airflow in the chopping chamber. The experimental factors considered were the relative position angle (RPA) between the collecting-chopping shaft and the sliding-supporting shaft, working velocity (WV) of the chopping chamber, and rotational velocity of the collecting-chopping blade (RVCCB). The results revealed that RPA and RVCCB had a significant influence on the maximum negative pressure in the inlet (MNPI), the proportion of negative pressure area at inlet (PNPAI), and the maximum pressure drop at inlet and outlet (MPDIO). Additionally, RVCCB had a strong influence on the maximum velocity, average velocity, and velocity variation coefficient of airflow at the outlet. Moreover, maximum turbulence (MT) and maximum turbulent kinetic energy dissipation rate (MTKEDR) showed a positive relationship with RVCCB. To determine the values of RPA, RVCCB, and WV, a multivariate parameters optimization regression model was constructed, which yielded the optimal values of 15°, 1800 r/min, and 0.50 m/s, respectively. Subsequently, a hyperbolic spiral-type guiding shell with an arc length of 90° was designed to enhance the uniform distribution of airflow in the chopping chamber. Finally, a validation experiment of airflow distribution was conducted. The results showed that the velocity difference between the simulation and the validation experiment was less than 15%, indicating the accuracy of CFD simulation, and the spreading uniformities of the chopped stalks were better than national standards. These findings can serve as technical and theoretical support for the design and optimization of chopping and spreading machines.
基金The project was supported by National Science Fund for Distinguished Young Scholars of China(Grant No.50025516)National Natural Science Foundation of China(Grant No.50675087,50673037,5030600131)+1 种基金“985 Project”of Jilin University,Natural Science Foundation of Henan Educational Committee(Grant No.2009B210006)Science Foundation(2008QN004)and Scientific Research Foundation for Ph.Doctor,Henan University of Science and Technology.
文摘In this study,maize stalk tegument separated from the maize pith was crushed to obtain the fiber.The cross-linking maize starch adhesives considering four main factors(water content,gelatinization temperature,NaOH as gelatinization agent and Na2B4O7·10H2O as cross-linking agent)with three levels were prepared based on an orthogonal test scheme L9(34)in order to increase the water-resisting property and the bonding strength of the common maize starch adhesives.The bonding properties of maize starch adhesives were characterized using shearing strength under compression loading.Physical models of fiber reinforced composites were established according to the microstructure analysis of the four species of insects’elytra including Protaetia orentalis,Copris ochus Motschulsky,Anoplophora chinensis and Cytister bengalensis Aube,which will provide the biomimetic models for the biomimetic laminated boards.The maize stalk fiber biomimetic laminated boards were prepared based on the structural models of the elytra material.The flexural strength and flexural elastic modulus of the biomimetic boards were examined.The results showed that the flexural strengths of the single layer jute fiber,-reinforced maize stalk fiber boards and the dual layer jute fiber reinforced maize stalk fiber boards are higher than those of the common maize stalk fiber boards and the other three groups of jute fiber hybrid reinforced stalk fiber boards because of the biomimetic laminated design.
文摘Sugarcane borer, Diatraea saccharalis (E), is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the US mid- south region. Resistance development in target pest populations is a major threat to the sustainable use of Bt crops. In our field trials in 2009, a significant number of live borers and plant injury fi'om D. saccharalis were observed in an experimental SmartStaxTM maize line. The objective of this study was to assess the relative susceptibility of two field popula- tions ofD. saccharalis collected from non-Bt and Bt maize plants containing SmartStaxTM traits to five individual Cry proteins. The five Bt proteins included two proteins (Cry 1A. 105 and Cry2Ab2) that were expressed in SmartStaxTM maize plants and three other common Bt proteins (Cry 1Aa, Cry 1Ab and Cry l Ac) that were not produced in SmartStaxTM. Larval mortality and growth inhibition on Bt diet of the fourth generation after field collections were evaluated 7 days after release of neonates on the diet surface. The laboratory bioassays showed that 50% lethal concentration (LCs0) values for CrylA. 105 and Cry2Ab2 for the population originated from Bt plants were 3.55- and 1.34-fold greater, respectively, than those of the population collected from non-Bt plants. In contrast, relative to the popula- tion from non-Bt plants, the LCs0 of the population sampled from Bt plants were 3.85-, 2.5- and 1.64-fold more sensitive to CrylAa, CrylAb and CrylAc, respectively. The re- sults did not provide clear evidence to conclude that the observed field survival of D. saccharalis on Bt plants was associated with increased levels of resistance.
基金This study was financially supported by the Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture,China(Grant No.201503136).
文摘No-till planting method is widely used for maize-wheat two-crops-a-year area in the North China Plain.However,cruel soil conditions,especially the large number of maize stalks which are hard to cutoff covering,often cause an unsatisfying planting quality.Based on the authors’previous investigation,ultrahigh-pressure(UHP)waterjet is capable to solve this problem and obtain qualified seedbeds.Thus,a UHP waterjet assisted furrow opener for no-till seeder was designed.Field tests showed that double-disc furrow openers worked well with UHP waterjet,since the sharpened disc blades could help to cut soil and residue,meanwhile,minimize soil disturbance.Response surface method(RSM)was used to investigate the relationship among forward speed,waterjet pressure,jet impingement angle and anti-blocking performance(stalks cutoff ratio and depth of soil cutting),and a Box-Behnken three-factor design was used to identify the optional operation parameters.A total of 17 combinations were conducted,and the results showed all three operation parameters significantly affected anti-blocking performance.Stalks cutoff ratio and depth of soil cutting increased with the increase of waterjet pressure,jet impingement angle,and decreased with the increase of forward speed.The optimization analysis indicated that when waterjet pressure was 267-280 MPa,jet impingement angle was 80.2°to 90.0°and forward speed was 4.00-4.42 km/h,the overall performance of UHP waterjet assisted double-disc furrow opener for no-till seeder was maximized.Stalks cutoff ratio could be above 95%and no blockage occurred.This study may provide a new approach and reference for the anti-blocking technology of no-tillage seeding.