China had implemented the national strategies for Major Function-oriented Zones (MFOZs) to realize the goal of national sustainable development since 2010. This study analyzed and compared spatio-temporal characteri...China had implemented the national strategies for Major Function-oriented Zones (MFOZs) to realize the goal of national sustainable development since 2010. This study analyzed and compared spatio-temporal characteristics and differences in built-up area for China's MFOZs using a China' s Land Use Database (CLUD) derived from high-resolution remotely sensed images in the periods of 2000-2010 and 2010-2013. To sum up: (1) The percentage of built-up area in each of the MFOZs was significantly different, revealing the gradient feature of national land development based on the distribution of the main functions. (2) Annual growth in built-up area in optimal development zones (ODZs) decreased signifi- cantly during 2010-2013 compared with the period 2000-2010, while annual growth in built-up area in key development zones (KDZs), agricultural production zones (APZs) and key ecological function zones (KEFZs) increased significantly. (3) In ODZs, the average annual increase in built-up area in the Yangtze River Delta region was significantly higher than in other regions; the average area increase and rate of increase of built-up area in KDZs was faster in the western region than in other regions; average annual area growth of built-up area in APZs in the northeast, central and western regions was twice as high as the previous decade on average; the annual rate of change and increase in the dynamic degree of built-up area were most notable in KEFZs in the central region. (4) The spatial pattern and charac- teristics of built-up area expansions in the period 2010-2013 reflected the gradient feature of the plan for MFOZs. But the rate of increase locally in built-up area in ODZs, APZs and KEFZs is fast, so the effective measures must be adopted in the implementation of national and regional policies. The conclusions indicated these methods and results were meaningful for future regulation strategies in optimizing national land development in China.展开更多
Given the high alpine grassland coverage and intensive animal grazing activity, the ecosystem and livelihood of the herders are extremely vulnerable in the headwater region of the Yellow River. A series of programs ha...Given the high alpine grassland coverage and intensive animal grazing activity, the ecosystem and livelihood of the herders are extremely vulnerable in the headwater region of the Yellow River. A series of programs have been implemented by the Chinese government to restore degraded grasslands in this region, and major function-oriented zones(MFOZs) applied in 2014, have divided the region into three zones, i.e., the development prioritized, restricted, and prohibited zones, based on environmental carrying capacity, as well as the utilization intensity of grassland. This study identified various restoration approaches adopted in different MFOZs, and assessed the effects of the approaches in order to determine the most effective approaches. We collected 195 questionnaires from herders to analyze the effects of the various restoration approaches, and additional remote sensing and statistical data were also used for the analysis. Four distinct differences in the ecological and socioeconomic characteristics were found in three MFOZs.(1) Five technologies were applied in the study areas.(2) The grassland recovery rate was higher in development prioritized zones than in restricted and prohibited zones during 2000 and 2016, and especially high and very high coverage grasslands increased in the areas where crop-forage cultivation and grass seeding dominated in the prioritized zones.(3) The net income of households in the development prioritized zone was the best of all three zones.(4) The degree of awareness and willingness of herders to restore grassland was more positive in development prioritized zones than in restricted zones, where more herders adopted approaches with a combination of enclosure + deratization + crop-forage cultivation + warm shed. Based on these findings, it is recommended that decision-makers need to increase their efforts to narrow the gap of willingness and behavior between herders and other stakeholders, such as researchers and grassland administrators, in order to ensure grassland sustainability in the MFOZs. It is also beneficial to understand the effects of restoration on the ecological carrying capacities in different zones depending on the different development goals.展开更多
We propose two zoning frameworks for regional decision-makers to regulate eco-economic capital in Lijiang,southwest China,using an index system,layer overlay,and GIS spatial analysis.The frameworks include eco-economi...We propose two zoning frameworks for regional decision-makers to regulate eco-economic capital in Lijiang,southwest China,using an index system,layer overlay,and GIS spatial analysis.The frameworks include eco-economic zoning and major function-oriented zoning,with an emphasis on ecoeconomic capital and human activities.The two frameworks share common advantages in top-down resource regulation by a certain function and the pursuit of competitiveness,sustainability and welfare fairness.Their differences in development orientation,functional links and scale suitability provide a complementary approach for regional decisionmakers.The frameworks will help to understand complex eco-economic resource patterns and foster appropriate regional regulation strategies.展开更多
The 11th Five Year Plan has divided national functional zones in the basic unit of county-level administrative region.After implementation of national Major Function-oriented Zones (MFOZ) at prefecture and county leve...The 11th Five Year Plan has divided national functional zones in the basic unit of county-level administrative region.After implementation of national Major Function-oriented Zones (MFOZ) at prefecture and county levels,the spatial development sequence must be specified,development intensity must be limited,oriented zones must be designated and "red line" areas of spatial governance must be defined.In view of the above,choosing a typical county area and exploring its functional zoning after orienting its major functions will supply reference for carrying out the national spatial planning in the 12th Five Year Period,and it will also provide experience for the study of function regionalization which is the theme of MFOZ in the present academic circles.In this paper,the authors take Shangyu County as an example to study the general principles,train of thought of county-level functional regionalization in development-optimized areas,and to explore its reasonable functional zoning plan.Consequently,the authors present five principles and suggest a function-oriented zoning plan with 2 levels and 4 types.展开更多
Research on the carbon budget and zoning for carbon compensation in major functional zones(MFZs)is important for formulating strategies for low-carbon development for each functional zone,promoting the collaborative g...Research on the carbon budget and zoning for carbon compensation in major functional zones(MFZs)is important for formulating strategies for low-carbon development for each functional zone,promoting the collaborative governance of the regional ecological environment,and achieving high-quality development.Such work can also contribute to achieving peak emissions and carbon neutrality.This paper constructs a theoretical framework for the carbon budget and carbon compensation from the perspective of the MFZ,uses 157 county-level units of the Beijing-Tianjin-Hebei urban agglomeration(BTHUA)as the study area,and introduces the concentration index,normalized revealed comparative advantage index,and Self Organizing Mapping-K-means(SOM-K-means)model to examine spatio-temporal variations in the carbon budget and carbon compensation zoning for the BTHUA from the perspective of MFZs.The authors propose a scheme for the spatial minimization of carbon emissions as oriented by low-carbon development.The results show that:(1)From 2000 to 2017,the carbon budget exhibited an upward trend of volatility,its centralization index was higher than the“warning line”of 0.4,and large regional differences in it were noted on the whole.(2)There were significant regional differences in the carbon budget,and carbon emissions exhibited a core-periphery spatial pattern,with a high-value center at Beijing-Tianjin-Tangshan that gradually decreased as it moved outward.However,the spatial pattern of carbon absorption tended to be stable,showing an inverted“U-shaped”pattern.It was high in the east,north,and west,and was low in the middle and the south.(3)The carbon budget was consistent with the strategic positioning of the MFZ,and the optimized development zone and key development zone were the main pressure-bearing areas for carbon emissions,while the key ecological functional zone was the dominant zone of carbon absorption.The difference in the centralization index of carbon absorption among the functional zones was smaller than that in the centralization index of carbon emissions.(4)There were 53 payment areas,64 balanced areas,and 40 obtaining areas in the study area.Nine types of carbon compensation zones were finally formed in light of the strategic objectives of the MFZ,and directions and strategies for low-carbon development are proposed for each type.(5)It is important to strengthen research on the carbon balance and horizontal carbon compensation at a microscopic scale,enrich the theoretical framework of regional carbon compensation,integrate it into the carbon trading market,and explore diversified paths for achieving peak emissions and carbon neutrality.展开更多
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital in...Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010–2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×10~3 km^2 while the cropland decreased by 4.9×10~3 km^2, and the total area of woodland and grassland decreased by 16.4×10~3 km^2. The spatial pattern of land-use changes in China during 2010–2015 was concordant with that of the period 2000–2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010–2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12 th Five-Year Plan(2011–2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in centraland western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.展开更多
In this paper, we firstly constructed a theoretical framework based on major function-oriented zones(MFOZs). Then taking the Loess Plateau(LP) as the study area, we revealed the spatio-temporal differences and influen...In this paper, we firstly constructed a theoretical framework based on major function-oriented zones(MFOZs). Then taking the Loess Plateau(LP) as the study area, we revealed the spatio-temporal differences and influencing factors of carbon emission equity by using the carbon equity model, Theil index, and Geo-detector. The results showed that:(1) From 2000 to 2017, the carbon equity of the Loess Plateau showed a downward trend, but the ecological carbon equity remained above 2.3, which was significantly higher than the economic carbon equity.(2) The ecological carbon equity in the Loess Plateau increased from the core of urban agglomeration to the periphery. The spatial pattern of economic carbon equity changed from low in the northeast and high in the southwest to low in the north and high in the south. The ecological support coefficient and economic contribution coefficient of provincial capital cities and their surrounding districts remained low since 2000.(3) The equity of carbon emissions in each function-oriented zone in the Loess Plateau was compatible with its orientation. The ecological carbon equity of the key ecological functional zones(KEFZs) was significantly higher than that of the key development zones(KDZs) and the major agricultural production zones(MAPZs), while the economic carbon equity of the KDZs was significantly higher than that of the MAPZs and the KEFZs.(4) The formation and evolution of the spatial differentiation pattern of carbon equity in the Loess Plateau was the result of the long-term interaction effects of geographic location, social economy, science and technology level, and policy system. Among them, eco-environmental protection policy, government financial support, and geographical location are the key driving factors for the spatial pattern of ecological carbon equity. Geographical location, social economic level, and science and technology level are the key factors driving the spatial pattern of economic carbon equity. According to this study, to achieving carbon equity on the Loess Plateau region, what the key approaches are to fully implement the planning of MFOZs, design differentiated regional carbon compensation mechanisms, improve energy efficiency and ecological environment capacity, and build a collaborative regional carbon emission governance system. This research can not only provide an effective framework for analysing the carbon equity, but also offer policy implication for promoting carbon emission reduction and achieving high-quality development goals in the ecologically fragile areas.展开更多
Environmental stress is used as an indicator of the overall pressure on regional environmental systems caused by the output of various pollutants as a result of human activities. Based on the pollutant emissions and s...Environmental stress is used as an indicator of the overall pressure on regional environmental systems caused by the output of various pollutants as a result of human activities. Based on the pollutant emissions and socioeconomic databases of the counties in Beijing–Tianjin–Hebei region, this paper comprehensively calculates the environmental stress index(ESI) for the urban agglomeration using the entropy weight method(EWM) at the county scale and analyzes the spatiotemporal patterns and the differences among the four types of major functional zones(MFZ) for the period 2012–2016. In addition, the socioeconomic driving forces of environmental stress are quantitatively estimated using the geographically weighted regression(GWR) method based on the STIRPAT model framework. The results show that:(1) The level of environmental stress in the Beijing–Tianjin–Hebei region was significantly alleviated during that time period, with a decrease in ESI of 54.68% by 2016. This decrease was most significant in Beijing, Tangshan, Tianjin, Shijiazhuang, and other central urban areas, as well as the Binhai New Area. The level of environmental stress in counties decreased gradually from the central urban areas to the suburban areas, and the high-level stress counties were eliminated by 2016.(2) The spatial spillover effect of environmental stress increased further at the county scale from 2012 to 2016, and spatial locking and path dependence emerged in the cities of Tangshan and Tianjin.(3) Urbanized zones(development-optimized and development-prioritized zones) were the major areas bearing environmental pollution in the Beijing–Tianjin–Hebei region in that time period. The ESI accounted for 65.98% of the whole region, where there was a need to focus on the prevention and control of environmental pollution.(4) The driving factors of environmental stress at the county scale included population size and the level of economic development. In addition, the technical capacity of environmental waste disposal, the intensity of agricultural production input, the intensity of territorial development, and the level of urbanization also had a certain degree of influence.(5) There was spatial heterogeneity in the effects of the various driving factors on the level of environmental stress. Thus, it was necessary to adopt differentiated environmental governance and reduction countermeasures in respect of emission sources, according to the intensity and spatiotemporal differences in the driving forces in order to improve the accuracy and adaptability of environmental collaborative control in the Beijing–Tianjin–Hebei region.展开更多
基金Key Project of National Natural Science Foundation of China, No.41371409 National Key Technology R&D Program, No.2013BAC03B00
文摘China had implemented the national strategies for Major Function-oriented Zones (MFOZs) to realize the goal of national sustainable development since 2010. This study analyzed and compared spatio-temporal characteristics and differences in built-up area for China's MFOZs using a China' s Land Use Database (CLUD) derived from high-resolution remotely sensed images in the periods of 2000-2010 and 2010-2013. To sum up: (1) The percentage of built-up area in each of the MFOZs was significantly different, revealing the gradient feature of national land development based on the distribution of the main functions. (2) Annual growth in built-up area in optimal development zones (ODZs) decreased signifi- cantly during 2010-2013 compared with the period 2000-2010, while annual growth in built-up area in key development zones (KDZs), agricultural production zones (APZs) and key ecological function zones (KEFZs) increased significantly. (3) In ODZs, the average annual increase in built-up area in the Yangtze River Delta region was significantly higher than in other regions; the average area increase and rate of increase of built-up area in KDZs was faster in the western region than in other regions; average annual area growth of built-up area in APZs in the northeast, central and western regions was twice as high as the previous decade on average; the annual rate of change and increase in the dynamic degree of built-up area were most notable in KEFZs in the central region. (4) The spatial pattern and charac- teristics of built-up area expansions in the period 2010-2013 reflected the gradient feature of the plan for MFOZs. But the rate of increase locally in built-up area in ODZs, APZs and KEFZs is fast, so the effective measures must be adopted in the implementation of national and regional policies. The conclusions indicated these methods and results were meaningful for future regulation strategies in optimizing national land development in China.
基金The National Key Research and Development Program of China(2016YFC0501906,2016YFC0503700).
文摘Given the high alpine grassland coverage and intensive animal grazing activity, the ecosystem and livelihood of the herders are extremely vulnerable in the headwater region of the Yellow River. A series of programs have been implemented by the Chinese government to restore degraded grasslands in this region, and major function-oriented zones(MFOZs) applied in 2014, have divided the region into three zones, i.e., the development prioritized, restricted, and prohibited zones, based on environmental carrying capacity, as well as the utilization intensity of grassland. This study identified various restoration approaches adopted in different MFOZs, and assessed the effects of the approaches in order to determine the most effective approaches. We collected 195 questionnaires from herders to analyze the effects of the various restoration approaches, and additional remote sensing and statistical data were also used for the analysis. Four distinct differences in the ecological and socioeconomic characteristics were found in three MFOZs.(1) Five technologies were applied in the study areas.(2) The grassland recovery rate was higher in development prioritized zones than in restricted and prohibited zones during 2000 and 2016, and especially high and very high coverage grasslands increased in the areas where crop-forage cultivation and grass seeding dominated in the prioritized zones.(3) The net income of households in the development prioritized zone was the best of all three zones.(4) The degree of awareness and willingness of herders to restore grassland was more positive in development prioritized zones than in restricted zones, where more herders adopted approaches with a combination of enclosure + deratization + crop-forage cultivation + warm shed. Based on these findings, it is recommended that decision-makers need to increase their efforts to narrow the gap of willingness and behavior between herders and other stakeholders, such as researchers and grassland administrators, in order to ensure grassland sustainability in the MFOZs. It is also beneficial to understand the effects of restoration on the ecological carrying capacities in different zones depending on the different development goals.
基金supported by the National Natural Science Foundation of China (No.41001098)the Academy-Locality Cooperation Program of Chinese Academy of Sciences (No.D-2009-02)
文摘We propose two zoning frameworks for regional decision-makers to regulate eco-economic capital in Lijiang,southwest China,using an index system,layer overlay,and GIS spatial analysis.The frameworks include eco-economic zoning and major function-oriented zoning,with an emphasis on ecoeconomic capital and human activities.The two frameworks share common advantages in top-down resource regulation by a certain function and the pursuit of competitiveness,sustainability and welfare fairness.Their differences in development orientation,functional links and scale suitability provide a complementary approach for regional decisionmakers.The frameworks will help to understand complex eco-economic resource patterns and foster appropriate regional regulation strategies.
基金supported jointly by the National Basic Research Program of MOST of China (Grant No.2008BAH31B06)the Key Program of NNSF of China (GrantNo. 40830741)
文摘The 11th Five Year Plan has divided national functional zones in the basic unit of county-level administrative region.After implementation of national Major Function-oriented Zones (MFOZ) at prefecture and county levels,the spatial development sequence must be specified,development intensity must be limited,oriented zones must be designated and "red line" areas of spatial governance must be defined.In view of the above,choosing a typical county area and exploring its functional zoning after orienting its major functions will supply reference for carrying out the national spatial planning in the 12th Five Year Period,and it will also provide experience for the study of function regionalization which is the theme of MFOZ in the present academic circles.In this paper,the authors take Shangyu County as an example to study the general principles,train of thought of county-level functional regionalization in development-optimized areas,and to explore its reasonable functional zoning plan.Consequently,the authors present five principles and suggest a function-oriented zoning plan with 2 levels and 4 types.
基金National Natural Science Foundation of China(42121001)National Natural Science Foundation of China(42130712)+1 种基金National Natural Science Foundation of China(42022007)Youth Innovation Promotion Association,CAS(2018069)。
文摘Research on the carbon budget and zoning for carbon compensation in major functional zones(MFZs)is important for formulating strategies for low-carbon development for each functional zone,promoting the collaborative governance of the regional ecological environment,and achieving high-quality development.Such work can also contribute to achieving peak emissions and carbon neutrality.This paper constructs a theoretical framework for the carbon budget and carbon compensation from the perspective of the MFZ,uses 157 county-level units of the Beijing-Tianjin-Hebei urban agglomeration(BTHUA)as the study area,and introduces the concentration index,normalized revealed comparative advantage index,and Self Organizing Mapping-K-means(SOM-K-means)model to examine spatio-temporal variations in the carbon budget and carbon compensation zoning for the BTHUA from the perspective of MFZs.The authors propose a scheme for the spatial minimization of carbon emissions as oriented by low-carbon development.The results show that:(1)From 2000 to 2017,the carbon budget exhibited an upward trend of volatility,its centralization index was higher than the“warning line”of 0.4,and large regional differences in it were noted on the whole.(2)There were significant regional differences in the carbon budget,and carbon emissions exhibited a core-periphery spatial pattern,with a high-value center at Beijing-Tianjin-Tangshan that gradually decreased as it moved outward.However,the spatial pattern of carbon absorption tended to be stable,showing an inverted“U-shaped”pattern.It was high in the east,north,and west,and was low in the middle and the south.(3)The carbon budget was consistent with the strategic positioning of the MFZ,and the optimized development zone and key development zone were the main pressure-bearing areas for carbon emissions,while the key ecological functional zone was the dominant zone of carbon absorption.The difference in the centralization index of carbon absorption among the functional zones was smaller than that in the centralization index of carbon emissions.(4)There were 53 payment areas,64 balanced areas,and 40 obtaining areas in the study area.Nine types of carbon compensation zones were finally formed in light of the strategic objectives of the MFZ,and directions and strategies for low-carbon development are proposed for each type.(5)It is important to strengthen research on the carbon balance and horizontal carbon compensation at a microscopic scale,enrich the theoretical framework of regional carbon compensation,integrate it into the carbon trading market,and explore diversified paths for achieving peak emissions and carbon neutrality.
基金National Key Research and Development Program,No.2017YFC0506501National Key Basic Research Program of China,No.2014CB954302
文摘Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010–2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×10~3 km^2 while the cropland decreased by 4.9×10~3 km^2, and the total area of woodland and grassland decreased by 16.4×10~3 km^2. The spatial pattern of land-use changes in China during 2010–2015 was concordant with that of the period 2000–2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010–2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12 th Five-Year Plan(2011–2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in centraland western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.
基金National Natural Science Foundation of China,No.42001251The Fundamental Research Funds for the Central Universities,No.GK202201008。
文摘In this paper, we firstly constructed a theoretical framework based on major function-oriented zones(MFOZs). Then taking the Loess Plateau(LP) as the study area, we revealed the spatio-temporal differences and influencing factors of carbon emission equity by using the carbon equity model, Theil index, and Geo-detector. The results showed that:(1) From 2000 to 2017, the carbon equity of the Loess Plateau showed a downward trend, but the ecological carbon equity remained above 2.3, which was significantly higher than the economic carbon equity.(2) The ecological carbon equity in the Loess Plateau increased from the core of urban agglomeration to the periphery. The spatial pattern of economic carbon equity changed from low in the northeast and high in the southwest to low in the north and high in the south. The ecological support coefficient and economic contribution coefficient of provincial capital cities and their surrounding districts remained low since 2000.(3) The equity of carbon emissions in each function-oriented zone in the Loess Plateau was compatible with its orientation. The ecological carbon equity of the key ecological functional zones(KEFZs) was significantly higher than that of the key development zones(KDZs) and the major agricultural production zones(MAPZs), while the economic carbon equity of the KDZs was significantly higher than that of the MAPZs and the KEFZs.(4) The formation and evolution of the spatial differentiation pattern of carbon equity in the Loess Plateau was the result of the long-term interaction effects of geographic location, social economy, science and technology level, and policy system. Among them, eco-environmental protection policy, government financial support, and geographical location are the key driving factors for the spatial pattern of ecological carbon equity. Geographical location, social economic level, and science and technology level are the key factors driving the spatial pattern of economic carbon equity. According to this study, to achieving carbon equity on the Loess Plateau region, what the key approaches are to fully implement the planning of MFOZs, design differentiated regional carbon compensation mechanisms, improve energy efficiency and ecological environment capacity, and build a collaborative regional carbon emission governance system. This research can not only provide an effective framework for analysing the carbon equity, but also offer policy implication for promoting carbon emission reduction and achieving high-quality development goals in the ecologically fragile areas.
基金National Natural Science Foundation of China,No.41971164, No.42071148Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA23020101。
文摘Environmental stress is used as an indicator of the overall pressure on regional environmental systems caused by the output of various pollutants as a result of human activities. Based on the pollutant emissions and socioeconomic databases of the counties in Beijing–Tianjin–Hebei region, this paper comprehensively calculates the environmental stress index(ESI) for the urban agglomeration using the entropy weight method(EWM) at the county scale and analyzes the spatiotemporal patterns and the differences among the four types of major functional zones(MFZ) for the period 2012–2016. In addition, the socioeconomic driving forces of environmental stress are quantitatively estimated using the geographically weighted regression(GWR) method based on the STIRPAT model framework. The results show that:(1) The level of environmental stress in the Beijing–Tianjin–Hebei region was significantly alleviated during that time period, with a decrease in ESI of 54.68% by 2016. This decrease was most significant in Beijing, Tangshan, Tianjin, Shijiazhuang, and other central urban areas, as well as the Binhai New Area. The level of environmental stress in counties decreased gradually from the central urban areas to the suburban areas, and the high-level stress counties were eliminated by 2016.(2) The spatial spillover effect of environmental stress increased further at the county scale from 2012 to 2016, and spatial locking and path dependence emerged in the cities of Tangshan and Tianjin.(3) Urbanized zones(development-optimized and development-prioritized zones) were the major areas bearing environmental pollution in the Beijing–Tianjin–Hebei region in that time period. The ESI accounted for 65.98% of the whole region, where there was a need to focus on the prevention and control of environmental pollution.(4) The driving factors of environmental stress at the county scale included population size and the level of economic development. In addition, the technical capacity of environmental waste disposal, the intensity of agricultural production input, the intensity of territorial development, and the level of urbanization also had a certain degree of influence.(5) There was spatial heterogeneity in the effects of the various driving factors on the level of environmental stress. Thus, it was necessary to adopt differentiated environmental governance and reduction countermeasures in respect of emission sources, according to the intensity and spatiotemporal differences in the driving forces in order to improve the accuracy and adaptability of environmental collaborative control in the Beijing–Tianjin–Hebei region.