期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Preparation of K-doped g-C_(3)N_(4) composite loaded on magnetic attapulgite and its degradation performance for malachite green
1
作者 Aishun Ma Hanlin Qian +1 位作者 Hongxia Liu Sili Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期110-121,共12页
Visible-light-driven photocatalysis is a promising technology for the treatment of dye wastewater.In this work,a novel photocatalyst of K-doped g-C_(3)N_(4) loaded on magnetic attapulgite(ATP)(Kω-g-C_(3)N_(4)@ATP-Fe_... Visible-light-driven photocatalysis is a promising technology for the treatment of dye wastewater.In this work,a novel photocatalyst of K-doped g-C_(3)N_(4) loaded on magnetic attapulgite(ATP)(Kω-g-C_(3)N_(4)@ATP-Fe_(3)O_(4))with excellent visible light photocatalytic properties and stability were successfully prepared and characterized.The removal efficiency of Kω-g-C_(3)N_(4)@ATP-Fe_(3)O_(4) for malachite green(MG)was studied,and the degradation mechanism was analyzed and proposed.It was found that the K_(5)-g-C_(3)N_(4)@ATP-Fe_(3)O_(4) photocatalyst possessed excellent degradation efficiency of over 98.0%for the MG dye wastewater under optimal conditions.Moreover,the K_(5)-g-C_(3)N_(4)@ATP-Fe_(3)O_(4) materials possessed good recyclability with a removal rate over 82%after 4 cycles.Under visible light condition,the K_(5)-g-C_(3)N_(4)@ATP-Fe_(3)O_(4) photocatalyst produce radicals of·OH and O_(2)^(-)to degrade the MG dyes,which was supported by electron paramagnetic resonance(EPR)and radical trapping experiments.In addition,the LC-MS analysis interpreted the degradation pathways and intermediates of MG in the solution.The findings in this work indicate that the prepared photocatalytic material has excellent degradation efficiency for MG and can be applied in dye wastewater treatment. 展开更多
关键词 PHOTOCATALYST malachite green K-doped g-C_(3)N_(4) DEGRADATION
下载PDF
Persistence of malachite green and leucomalachite green in perch (Lateolabrax japonicus) 被引量:1
2
作者 谭志军 邢丽红 +4 位作者 郭萌萌 王洪艳 江艳华 李兆新 翟毓秀 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第3期647-655,共9页
The persistence of malachite green (MG), and its metabolite leucomalachite green (LMG), in fish tissues is still unclear, leading to many trade disputes. In this research, we established and evaluated an HPLC method t... The persistence of malachite green (MG), and its metabolite leucomalachite green (LMG), in fish tissues is still unclear, leading to many trade disputes. In this research, we established and evaluated an HPLC method that could detect MG and LMG simultaneously, and then investigated the persistence of these two toxins in the tissues of juvenile perch (Lateolabrax japonicus) post sub-chronic MG exposure at 1.0 mg/L. Exposure lasted for 2 h everyday and was repeated six times. The perch were then placed in MG-free seawater for 100 d to eliminate the toxins. Results show that MG accumulated in the tissues, including the gills, liver, muscle, blood and viscera, and then was metabolized rapidly to LMG. The concentrations of these two toxins increased significantly with the accumulation process. In general, the highest concentrations of MG and LMG in all tissue exceeded 1 000 μg/kg, except for MG in the muscle. The order of accumulation levels (highest to lowest) of MG was gill>blood>liver>viscera>muscle, while that of LMG was liver>blood>gill>viscera>muscle. High levels of MG or LMG could persist for several hours but decreased rapidly during the elimination process. The concentration of LMG was much higher than that of MG during the experiment, especially in the gill, liver and blood. Therefore, the three tissues play important roles in toxin accumulation, biotransformation, and elimination. Although the MG and LMG concentrations in muscle were much lower than in other tissues, the content still exceeded the European minimum required performance limit (MRPL), even after 2 400 h (100 d) of elimination. This demonstrates that it is extremely difficult to eliminate MG and LMG from tissues of perch, and therefore use of these toxins is of concern to public health. 展开更多
关键词 PERSISTENCE RESIDUES malachite green leucomalachite green PERCH
下载PDF
A novel adsorbent of three-dimensional ordered macro/mesoporous carbon for removal of malachite green dye 被引量:5
3
作者 WAGN Jie HOU Guang-ya +3 位作者 WU Lian-kui CAO Hua-zhen ZHENG Guo-qu TANG Yi-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期388-402,共15页
Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing mala... Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing malachite green(MG)in aqueous solution.The microstructures of the adsorbents were characterized by FESEM,TEM and BET,and the effects of initial dye concentration,contact time,solution pH,and temperature on adsorption performance were investigated.The results show that the 3DOM/m-C exhibits extremely high adsorption capacity of 3541.1 mg/g within 2 h,which could be attributed to the novel ordered hierarchical structure with mesopores on three-dimensional ordered macroporous carbon walls.And the adsorption behavior conforms to the pseudo-second-order kinetic and Langmuir adsorption isotherm.3DOM/m-C can be recycled after being desorbed by absolute ethanol,and still maintains a high capacity of 2762.06 mg/g after 5 cycles. 展开更多
关键词 malachite green adsorption three-dimensional ordered macroporous MESOPOROUS thermodynamics kinetics DESORPTION
下载PDF
Fe Nanoparticles Synthesized by Pomegranate Leaves for Treatment of Malachite Green 被引量:2
4
作者 HU Yu ZHOU Shiyu +5 位作者 PAN Xiaobin ZHOU Fan SUN Yong LIU Meiqun ZHANG Dong ZHANG Lingfan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期350-354,共5页
A green and convenient pathway of preparing iron nanoparticles(FeNPs)with pomegranate leaf(PG)extract for highly effective removal of malachite green(MG)was proposed under ambient conditions.The materials were charact... A green and convenient pathway of preparing iron nanoparticles(FeNPs)with pomegranate leaf(PG)extract for highly effective removal of malachite green(MG)was proposed under ambient conditions.The materials were characterized by scanning electron microscope(SEM),X-ray energy-dispersive spectrometer(EDS),Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)techniques.The results show that their surfaces are capped and stabilized by PG extract with amorphous nature and without any detection of zero-valent iron.The size and surface valence state of FeNPs are the key factors that affect the MG removal efficiency.As the reagent volume ratio of PG extract to FeCl_(3) increases greater than 1,the cross-linked FeNPs become more obvious,having a homogeneous distribution with the size range from 30 to 40 nm,and show an increasing ratio ofFe(Ⅱ)/Fe(Ⅲ),which is in proportion to the degradation efficiency of MG,reaching higher than 95%in only 2 min by using 50 mg Fe/L FeNPs and 200 mg/L MG. 展开更多
关键词 green synthesis iron nanoparticles POMEGRANATE leaf extract malachite green
下载PDF
Degradation of malachite green dye by Tenacibaculum sp. HMG1isolated from Pacific deep-sea sediments 被引量:2
5
作者 QU Wu HONG Guolin ZHAO Jing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第6期104-111,共8页
A deep-sea bacterium from the Pacific Ocean identified as Tenacibaculum sp. HMG1 was found to have strong malachite green(MG) degradation activity. The MG tolerance and decolorizing activities of strain HMG1 were co... A deep-sea bacterium from the Pacific Ocean identified as Tenacibaculum sp. HMG1 was found to have strong malachite green(MG) degradation activity. The MG tolerance and decolorizing activities of strain HMG1 were confirmed by bacterial growth and high-performance liquid chromatography(HPLC) analyses. Strain HMG1 was capable of removing 98.8% of the MG in cultures within 12 h and was able to grow vigorously at 20 mg/L MG. A peroxidase gene detected in the genome of strain HMG1 was found to be involved in the MG biodegradation process. The corresponding recombinant peroxidase(r POD) demonstrated high degradative activity at 1 000 mg/L MG. Based on the common candidate intermediates, strain HMG1 was inferred to have one primary MG degradation pathway containing r POD. In addition, five other candidate intermediates of the r POD-MG degradative process were detected. The optimal conditions for MG degradation were determined and showed that strain HMG1 and the r POD enzyme could maintain high bioactivity at a low temperature(20℃), variable p H values(6.0–9.0), higher salinities(100 mmol/L) and other factors, such as multiple metal ions, H2O2 and EDTA.MG-tolerant strain Tenacibaculum sp. HMG1 and its peroxidase have prospective applications as environmental amendments for MG degradation during coastal remediation. 展开更多
关键词 deep-sea sediment Tenacibaculum mesophilum HMG1 peroxidase malachite green degradation characteristics
下载PDF
Development of a Fast ELISA for the Specific Detection of both Leucomalachite Green and Malachite Green 被引量:1
6
作者 JIANG Yousheng CHEN Li +3 位作者 HU Kun YU Wenjuan YANG Xianle LU Liqun 《Journal of Ocean University of China》 SCIE CAS 2015年第2期340-344,共5页
Malachite green(MG), a dye, is an antifungal agent that has been used to treat and prevent fish diseases. It is metabolized into reduced leucomalachite green forms(LMG) that may reside in fish muscles for a long perio... Malachite green(MG), a dye, is an antifungal agent that has been used to treat and prevent fish diseases. It is metabolized into reduced leucomalachite green forms(LMG) that may reside in fish muscles for a long period, thus being harmful to human health. The aim of this study was to develop a competitive and direct enzyme-linked immunosorbent assay(ELISA) to detect MG and LMG specifically. The monoclonal antibody(m Ab) to LMG was generated using a hybridoma technique. The obtained m Ab showed good cross-reactivity(CR) to malachite green(MG), but not to crystal violet(CV) and Brilliant Green(BG). The m Ab was used to develop a fast detecting ELISA of MG and LMG in fish. By introducing the conjugation LMG-HRP, the detection capability was 0.37 ng m L-1 for MG and LMG. The mean recovery from spiked grass carp tissues ranged from 76.2% to 82.9% and the coefficients of variation varied between 1.8% and 7.5%. The stable and efficient monoclonal cell line obtained is a sustainable source of sensitive and specific antibody to MG and LMG. 展开更多
关键词 monoclonal antibody malachite green ELISA FISH
下载PDF
Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass:A Review 被引量:1
7
作者 Annisa Ardiyanti Suprapto Suprapto Yatim Lailun Ni’mah 《Journal of Renewable Materials》 EI 2023年第11期3789-3806,共18页
Dyes are pervasive contaminants in wastewater,posing significant health risks to both humans and animals.Among the various methods employed for effective dye removal,adsorption has emerged as a highly promising approa... Dyes are pervasive contaminants in wastewater,posing significant health risks to both humans and animals.Among the various methods employed for effective dye removal,adsorption has emerged as a highly promising approach due to its notable advantages,including high efficiency,cost-effectiveness,low energy consumption,and operational simplicity compared to alternative treatments.This comprehensive review focuses on investigating adsorbents derived from biowastes and biomass,specifically carbon-based and non-conventional adsorbents,for the removal of malachite green,a widely used dye known for its toxic and carcinogenic properties.Carbon-based adsorbents encompass two main types:activated carbon and biochar,while non-conventional adsorbents refer to powder sorbents without carbonaceous treatments.Extensive studies have reported remarkable findings,with achieved maximum removal percentages exceeding 98%and capacities reaching 250 mg/g.These results highlight the exceptional efficacy of the reviewed adsorbents in eliminating malachite green from wastewater.By exploring the potential of bio-based adsorbents,this review sheds light on sustainable and environmentally friendly solutions for mitigating dye pollution. 展开更多
关键词 ADSORPTION carbon DYES malachite green WASTEWATER
下载PDF
Reactive species in resin supported heterogeneous Fenton-like oxidation of Malachite green solution 被引量:1
8
作者 张瑛洁 马军 +2 位作者 赵吉 柳旭升 宋磊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第2期247-253,共7页
During the oxidative degradation of nonbiodegradable Malachite green (MG) by means of H2O2 /FeIIIR (iron supported on ion-exchage resin) in a dynamic column,the binding energy of the Fe(2p3/2) region for XPS spectra w... During the oxidative degradation of nonbiodegradable Malachite green (MG) by means of H2O2 /FeIIIR (iron supported on ion-exchage resin) in a dynamic column,the binding energy of the Fe(2p3/2) region for XPS spectra was found to be different between the top layer and the bottom layer in this column. Based on the data from XPS spectra and DMPO-OH·signal by EPR spectra,it is shown that the formation of ferryl (IV) is the key step for the oxidation of MG. The ferryl (IV) species can oxidize MG,and its redox potential is about 0. 739 - 0. 803 V measured by cyclic voltammograms (CV) . The catalytic capability of ferryl (IV) species was also evaluated,and it is found that it can promote the decomposition of H2O2 more efficiently than ferric iron. The removal rate of MG mainly depends on the adsorption of catalyst. Both ferryl (IV) and HO·radicals are the reactive species in the system. The oxidation of HO·is only a small part of the overall removal rate. Based on the obtained results,a possible mechanism for a resin-supported Fenton-like oxidation reaction is proposed. 展开更多
关键词 FENTON-LIKE ferryl malachite green hydroxyl radical
下载PDF
Adsorption Characteristics of Activated Carbon Derived from Scrap Tires for Malachite Green:Influence of Small Organics 被引量:2
9
作者 李丽 刘玉静 +2 位作者 王佳平 刘双喜 朱坦 《Transactions of Tianjin University》 EI CAS 2013年第6期425-429,共5页
The influence of small organics on the adsorption characteristics of activated carbon produced from industrial pyrolytic tire char(APTC)for malachite green(MG) was investigated by a batch method. Phenol was chosen as ... The influence of small organics on the adsorption characteristics of activated carbon produced from industrial pyrolytic tire char(APTC)for malachite green(MG) was investigated by a batch method. Phenol was chosen as the representative of small organics. The effects of phenol on adsorption equilibrium, kinetics and thermodynamics were studied systematically. The results indicate that APTC is a potential adsorbent for MG. The presence of phenol decreases the adsorption capacity of APTC for MG, but improves the rate of adsorption, while the adsorption characteristics, such as equilibrium, kinetics and thermodynamics are not affected by phenol. The adsorption equilibrium data follow Langmuir isotherm and the kinetic data are well described by the pseudo-second-order kinetic model. The adsorption process follows intra-particle diffusion model and the adsorption rate is determined by more than one process. Thermodynamic study shows that the adsorption is an endothermic and spontaneous physisorption process. 展开更多
关键词 activated carbon scrap tire pyrolytic tire char adsorption malachite green phenol
下载PDF
Insights into remediation technology for malachite green wastewater treatment
10
作者 Peter Olusakin Oladoye Timothy Oladiran Ajiboye +2 位作者 Wycliffe Chisutia Wanyonyi Elizabeth Oyinkansola Omotola Mayowa Ezekiel Oladipo 《Water Science and Engineering》 EI CAS CSCD 2023年第3期261-270,共10页
Malachite green (MG) dye is a common industrial dye and organic contaminant that can be found in (waste)water. Textile and food industries make use of MG as dyeing and food coloring agents, respectively. However, MG i... Malachite green (MG) dye is a common industrial dye and organic contaminant that can be found in (waste)water. Textile and food industries make use of MG as dyeing and food coloring agents, respectively. However, MG is both genotoxic and mutagenic. Hence, the elimination of MG from MG-laden-wastewater is germane. This review summarizes up-to-date researches that have been reported in literature as regards the decontamination of toxic MG wastewater. Various removal methods (adsorption, membrane, Fenton system, and heterogenous and homogeneous photodegradation) were discussed. Of the two basic technologies that are comprehensively explored and reviewed, chemical treatment methods are not as viable as physical removal methods, such as the adsorption technology, due to the lack of secondary pollutant production, simple design, low operation costs, and resource availability. This review also presents various practical knowledge gaps needed for large-scale applications of adsorptive removal methods for MG. It concludes by recommending further research on the techniques of cheap and simple decontamination of MG to get clean water. 展开更多
关键词 CONTAMINANT WASTEWATER DECONTAMINATION POLLUTION malachite green DYE
下载PDF
Flow-injection spectrophotometric determination of vanadium with malachite green oxalate by bromate in acidic and micellar medium
11
作者 Mohsen Keyvanfarda Narges Abedib 《Rare Metals》 SCIE EI CAS CSCD 2011年第3期216-221,共6页
A flow injection method is proposed for determining vanadium(V). The method is based on its catalytic effect on the oxidation of malachite green oxalate by bromate. The reaction was monitored spectrophotometrically ... A flow injection method is proposed for determining vanadium(V). The method is based on its catalytic effect on the oxidation of malachite green oxalate by bromate. The reaction was monitored spectrophotometrically by measuring malachite green oxalate absorbance at λmax = 625 nm. The reagents and manifold variables, which have influences on the sensitivity, were investigated and the optimum conditions were established. The optimized conditions made it possible to determine vanadium in the ranges of 10-140 ng/mL with a detection limit of 5.2 ng/mL and a sample rate of 20 ± 5 samples/h. 展开更多
关键词 VANADIUM flow injection analysis malachite green oxalate SPECTROPHOTOMETRY micellar medium
下载PDF
Studies on the synthesis and properties of malachite green imprinted polymer
12
作者 Li Qiang Su Shi Qiao Wei Bing Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第2期229-232,共4页
A new molecularly imprinted polymer was synthesized with malachite green (MG) as molecular template, methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, and azobisisobutyronitr... A new molecularly imprinted polymer was synthesized with malachite green (MG) as molecular template, methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, and azobisisobutyronitrile (AIBN) as initiator. Recognition properties of the MG imprinted polymer were studied by equilibrium adsorption and HPLC. The results showed that the imprinted polymer had good affinity and marked selectivity for MG, and can separate MG with its analogue commendably. The new polymer can be used for the enrichment of MG in complex sample, and can work as separation media to separate and detect MG by HPLC. 展开更多
关键词 Molecular imprinting malachite green Functional monomer HPLC
下载PDF
Extraordinary adsorption of acidic fuchsine and malachite green onto cheap nano-adsorbent derived from eggshell
13
作者 Atefeh Moosavi Ali Akbar Amooey +1 位作者 Ali Alinejad mir Mojtaba Hedayati Marzbali 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1591-1602,共12页
Removal of dyestuffs such as Acidic Fuchsine(AF)and Malachite Green(MG)being present in many forms in industries is vital to protect water reservoirs from their catastrophic effects on the ecosystem.This study attempt... Removal of dyestuffs such as Acidic Fuchsine(AF)and Malachite Green(MG)being present in many forms in industries is vital to protect water reservoirs from their catastrophic effects on the ecosystem.This study attempts to effectively eliminate these dyes using a low-cost and eco-friendly material.Eggshell,as a biocompatible by-product,was initially characterized,then some modifications were conducted,and its morphology and chemical structure were then examined through(Atomic force microscopy)AFM,(Fourier-Transform Infrared Spectroscopy)FTIR,(Energy-Dispersive X-ray Spectroscopy)EDS and(Brunauer–Emmett–Teller)BET analyses.They revealed that the modifications on raw material gave rise to a natural nano-adsorbent presenting porous medium appropriate for targeted adsorbate molecules with the average particle size and average pore diameter of 54 and^2 nm,respectively.Functional groups on the adsorbent surface were also of importance to assist the adsorption of AF and MG.The effect of contact time,adsorbent dose,solution p H and initial concentration was evaluated.Pseudo-second order model accurately correlated the experimental kinetic data for both dyes.Moreover,the participation of intra-particle diffusion along with film diffusion in controlling the process was suggested.Langmuir isotherm model fitted very well to the equilibrium data for both dyes and maximum monolayer adsorption capacity of AF and MG was accordingly calculated to be 5000 and 3333.33 mg·g-1 respectively.The inherent characteristics of eggshell make it a potential material to remove contaminants from wastewater in future applications. 展开更多
关键词 Egg shell Acidic Fuchsine malachite green Ultrahigh adsorption
下载PDF
Preparation and Application of Polymerized High Internal Phase Emulsion Monoliths for the Preconcentration and Determination of Malachite Green and Leucomalachite Green in Water Samples
14
作者 Li-Ping Jiang Na Li +3 位作者 Lin-Qi Liu Xian Zheng Fu-You Du Gui-Hua Ruan 《Journal of Analysis and Testing》 EI 2020年第4期264-272,共9页
Polymerized high internal phase emulsion(polyHIPE)monoliths were prepared and applied as adsorbent materials for solid-phase extraction(SPE)of malachite green(MG)and leucomalachite green(LMG)from water samples.The pol... Polymerized high internal phase emulsion(polyHIPE)monoliths were prepared and applied as adsorbent materials for solid-phase extraction(SPE)of malachite green(MG)and leucomalachite green(LMG)from water samples.The polyHIPE monoliths were prepared by post-functionalization of monolithic surface with 6-aminocaproic acid(ACA)via ring opening reaction of epoxy groups in glycidyl methacrylate(GMA)-based polyHIPEs,and then applied to the preconcentration and determination of trace MG and LMG in environmental water samples by combing with high-performance liquid chromatog-raphy(HPLC).Taking MG and LMG as targets,main factors affecting SPE performance of the polyHIPE monoliths were investigated.Under the optimized conditions,the ACA-functionalized polyHIPE monoliths could effectively preconcentrate MG and LMG from 150 mL of water samples,and the recoveries of MG and LMG at three spiked levels were ranged from 84.8 to 97.4%with the relative standard deviations(RSDs)lower than 6%.The proposed method exhibited good linearity in the range of 2-200 ng mL^(-1),with low limits of detection of 17.0 and 8.7 pg mL^(-1)for MG and LMG,respectively.In addi-tion,the prepared ACA-modified polyHIPE monolith showed good durability and stability,and it could be reused for 200 cycles without obvious losing the extraction performance. 展开更多
关键词 High internal phase emulsion Solid-phase extraction High-performance liquid chromatography malachite green Leucomalachite green
原文传递
High photocatalytic activity over starfish-like La-doped ZnO/SiO_(2) photocatalyst for malachite green degradation under visible light 被引量:2
15
作者 Shuo Wang Zhenke Chen +2 位作者 Ying Zhao Chenlu Sun Jianye Li 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第7期772-780,I0001,共10页
In this work,the unique starlike La-doped ZnO-SiO_(2) photocatalysts were constructed by an evaporation and calcination method and characterized in detail.UV-vis reflectance and DFT calculation confirm that the doping... In this work,the unique starlike La-doped ZnO-SiO_(2) photocatalysts were constructed by an evaporation and calcination method and characterized in detail.UV-vis reflectance and DFT calculation confirm that the doping with La allows to obtain a decrease of band gap of ZnO/SiO_(2),which enhances visible light absorbance and oxidizing ability.The photoluminescence intensity reduces greatly,indicating more effective separation of the photo generated carriers of La-doped ZnO-SiO_(2).Photocatalytic activities of Ladoped ZnO-SiO_(2) with different doping ratios under simulated visible light irradiation were evaluated with malachite green(MG) as a model pollutant.Under optimized conditions including solution pH of 8,15 mg/L of MG solution and 15 mg of catalyst dosage,0.2% La-ZnO-SiO_(2) exhibits the best catalytic activity in photodegradations of MG in water.The removal and mineralization efficiency of MG can reach 96.1%and 70.9% in 140 min,respectively.The as-prepared catalysts present superior stability and recyclability after four times reuse.Moreover,selective quenching experiments indicate that hydroxyl radical(·OH),hole(h^(+)) and superoxide radical(·O_(2)^(-)) are the main reactive species responsible for MG degradation.Possible mechanism for photocatalytic elimination of MG over La-doped ZnO/SiO_(2) photocatalyst is finally proposed. 展开更多
关键词 ZnO Lanthanum doping PHOTOCATALYST malachite green DFT calculation Rare earths
原文传递
Study on Preconcentration of Trace Copper Using Microcrystalline Triphenylmethane Loaded with Malachite Green
16
作者 梁勇 赵小红 +2 位作者 李全民 崔凤灵 刘国光 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2007年第4期521-526,共6页
The paper describes a novel method for copper preconcentration using microcrystalline triphenylmethane loaded with malachite green prior to the determination by the flame atomic absorption spectrometry (FAAS). Under... The paper describes a novel method for copper preconcentration using microcrystalline triphenylmethane loaded with malachite green prior to the determination by the flame atomic absorption spectrometry (FAAS). Under the optimum conditions, Cu(Ⅱ) can be totally adsorbed on the surface of microcrystalline triphenylmethane, and completely separated from Pb(Ⅱ), Cd(Ⅱ), Co(Ⅱ), Cr(Ⅲ), Ni(Ⅱ), Mn(Ⅱ), Fe(Ⅲ) and Al(Ⅲ) by controlling acidity. The preconcentration factor of this proposed method is 200. The recovery is in a range of 97.5%-105%. The relative standard deviation (RSD) is not beyond 3.0%. The proposed method has been successfully applied to the determination of trace copper in various water samples with satisfactory results. 展开更多
关键词 microcrystalline triphenylmethane malachite green PRECONCENTRATION determination copper environmental water sample
原文传递
A novel surface-oxidized rigid carbon foam with hierarchical macro-nanoporous structure for efficient removal of malachite green and lead ion
17
作者 Qiyun Zhang Renquan Wu +2 位作者 Yunhong Zhou Qilang Lin Changqing Fang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第8期15-28,共14页
This study developed a method to fabricate a surface-oxidized rigid carbon foam(ORCF)with hierarchical macro-nanoporous structure via KOH activation of the carbon foam with two kinds of macropores followed by HNO_(3) ... This study developed a method to fabricate a surface-oxidized rigid carbon foam(ORCF)with hierarchical macro-nanoporous structure via KOH activation of the carbon foam with two kinds of macropores followed by HNO_(3) hydrothermal oxidation.The structures of the prepared ORCF were characterized using scanning electron microscopy,transmission electron microscopy,X-ray diffraction,Fourier transform infrared(FTIR)spectra,X-ray photoelectron spectroscopy,and N_(2) adsorption-desorption analyzer.Results demonstrate that the ORCF possesses a fluffy and porous structure with rich oxygen-containing groups.There are numerous through-holes on its pore surfaces connected with two-level macropores forming hierarchical macroporous channels.Meanwhile,the ORCF remains a good bulk structure with a compression strength of 0.74 MPa at a bulk density of 0.09 g cm^(−3).Batch adsorption experiments for malachite green(MG)and Pb^(2+) were studied through the single variable method to investigate the effects of different initial conditions on its adsorption process.The ORCF has maximum adsorption capacities for MG and Pb^(2+) of 587.68 mg g^(−1) and 157.80 mg g^(−1) with high partition coefficients of 17.41 mg g^(−1)μM^(−1) and 14.86 mg g^(−1)μM^(−1),respectively.The experimental data are suitable for Langmuir isotherm and Pseudo-secondorder kinetic models,which correspond to monolayer chemisorption.Thermodynamic analysis indicates that the adsorption process is spontaneous and endothermic.Moreover,the removal percentages of MG and Pb^(2+)by the ORCF could remain above 90%after five cycles,implying that the ORCF is an efficient adsorbent with good adsorption ability and cycling stability. 展开更多
关键词 HNO3 oxidation Carbon foam malachite green LEAD Adsorption
原文传递
Garlic Root Biomass as Novel Biosorbents for Malachite Green Removal: Parameter Optimization, Process Kinetics and Toxicity Test
18
作者 REN Hejun ZHANG Ruonan +2 位作者 WANG Qiaochu PAN Hongyu WANG Yan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2016年第4期647-654,共8页
The potential of the agricultural waste garlic root to remove malachite green(MG) from aqueous solutions was evaluated. The adsorption of this dye onto garlic root was confirmed by means of Fourier transform infrare... The potential of the agricultural waste garlic root to remove malachite green(MG) from aqueous solutions was evaluated. The adsorption of this dye onto garlic root was confirmed by means of Fourier transform infrared analysis(FTIR) and scanning electron microscopy(SEM). The equilibrium data fitted well into the Langmuir model(R2〉0.99), and the adsorption kinetics followed the pseudo-second-order equation(R2〉0.99). The maximum ad- sorption capacities of MG onto the adsorbent were 172.41 and 232.56 mg/g with the addition of 1 and 2 g/L garlic root, respectively. The optimal conditions for MG removal were established on the basis of orthogonal experiments(OAl6 matrix). The concentrations of both MG and garlic root significantly affected the removal efficiency. The acute toxicity test indicated that the treated MG solutions were less toxic than the parent solutions. These results suggest that garlic root is a potential low-cost adsorbent for removing dye from industrial wastewater. 展开更多
关键词 Garlic root malachite green ADSORPTION Toxicity test WASTEWATER
原文传递
Removal of malachite green from aqueous solution by sorption on hydrilla verticillata biomass using response surface methodology
19
作者 R.RAJESHKANNAN N.RAJAMOHAN M.RAJASIMMAN 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2009年第2期146-154,共9页
In the present study,the effect of adsorbent dose,pH,temperature,initial dye concentration and contact time on malachite green removal from an aqueous medium using hydrilla verticillata biomass has been investigated.T... In the present study,the effect of adsorbent dose,pH,temperature,initial dye concentration and contact time on malachite green removal from an aqueous medium using hydrilla verticillata biomass has been investigated.The central composite face-centered experimental design(CFCD)in respons surface methodol-ogy(RSM)was used for designing the experiments as well as for full response surface estimation.The optimum conditions for maximum removal of malachite green from an aqueous solution of 75.52mg/L were as follows:adsorbent dose(11.14g/L),pH(8.4),temperature(48.4℃)and contact time(194.5min).This was evidenced by the higher value of coefficient of determination(R^(2)=0.9158). 展开更多
关键词 response surface methodology hydrilla verti-cillata malachite green ADSORPTION central composite design
原文传递
Brown marine algae turbinaria conoides as biosorbent for Malachite green removal:Equilibrium and kinetic modeling
20
作者 R.RAJESH KANNAN M.RAJASIMMAN +1 位作者 N.RAJAMOHAN B.SIVAPRAKASH 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2010年第1期116-122,共7页
In this study,the biosorption of Malachite green(MG)onto Turbinaria conoides,brown marine algae,was studied with respect to initial pH,temperature,initial dye concentration,and sorbent dosage.The optimum initial pH an... In this study,the biosorption of Malachite green(MG)onto Turbinaria conoides,brown marine algae,was studied with respect to initial pH,temperature,initial dye concentration,and sorbent dosage.The optimum initial pH and temperature values for MG removal were found to be 8.0 and 30℃,respectively.Sorbent dosage was found to strongly influence the removal of MG.Equilibrium studies were carried out to test the validity of the Langmuir(q_(max)=66.6 mg/g and b=0.526 mL mol/L)and the Freundlich(n=1.826 and K=3.751 mg/g)isotherms.The kinetic studies indicated the validity of the pseudo first-order and second-order equation. 展开更多
关键词 malachite green(MG) Turbinaria conoides marine algae equilibrium studies BIOSORPTION
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部