The use of dendrochronology to study and date geomorphic processes in volcanic environments is still incipient, even more so on the volcanic slopes covered by temperate forests in central Mexico. Mass movements, such ...The use of dendrochronology to study and date geomorphic processes in volcanic environments is still incipient, even more so on the volcanic slopes covered by temperate forests in central Mexico. Mass movements, such as debris flows, often impact forest stands where they cause damage to individual trees, thereby generating growth disturbances(GD) in the tree-ring records. The identification and dating of GD enables reconstruction of the age of trees colonizing bare surfaces after major events, but also allows the assessment of the frequency or spatial distribution of past geomorphic process activity. Here we used increment cores from 65 Pinus leiophylla, Abies religiosa, and Alnus jorullensis trees growing in the Axal gorge, on the southern slopes of La Malinche volcano, to unravel past debris-flow activity both temporally and spatially. Based on the combination of GD records, a weighted tree response index(Wit), field evidence and hydrometeorological records, we reconstructed 23 debris flows since 1933.Interestingly, almost two-thirds of the reconstructed years with debris-flow activity in Axal gorge match with events recorded in Axaltzintle gorge located on the NE slopes of La Malinche. These findings suggest a regional triggering mechanism, most likely related to the occurrence of hurricanes. This research could be useful for disaster risk management of the La Malinche National Park.展开更多
文摘The use of dendrochronology to study and date geomorphic processes in volcanic environments is still incipient, even more so on the volcanic slopes covered by temperate forests in central Mexico. Mass movements, such as debris flows, often impact forest stands where they cause damage to individual trees, thereby generating growth disturbances(GD) in the tree-ring records. The identification and dating of GD enables reconstruction of the age of trees colonizing bare surfaces after major events, but also allows the assessment of the frequency or spatial distribution of past geomorphic process activity. Here we used increment cores from 65 Pinus leiophylla, Abies religiosa, and Alnus jorullensis trees growing in the Axal gorge, on the southern slopes of La Malinche volcano, to unravel past debris-flow activity both temporally and spatially. Based on the combination of GD records, a weighted tree response index(Wit), field evidence and hydrometeorological records, we reconstructed 23 debris flows since 1933.Interestingly, almost two-thirds of the reconstructed years with debris-flow activity in Axal gorge match with events recorded in Axaltzintle gorge located on the NE slopes of La Malinche. These findings suggest a regional triggering mechanism, most likely related to the occurrence of hurricanes. This research could be useful for disaster risk management of the La Malinche National Park.