BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of canc...BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.展开更多
Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechan...Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
AIM:To elucidate the effect of rapamycin on regulating the production of interleukin(IL)-1β in Aspergillus fumigatus(A.fumigatus)-induced keratitis and to verify whether the expression of IL-1β in A.fumigatus k...AIM:To elucidate the effect of rapamycin on regulating the production of interleukin(IL)-1β in Aspergillus fumigatus(A.fumigatus)-induced keratitis and to verify whether the expression of IL-1β in A.fumigatus keratitis is associated with the mammalian target of rapamycin(mT OR)/Toll-like receptor 4(TLR4) signaling pathway.METHODS:Fungal keratitis mouse models of susceptible C57 BL/6 mice were established using A.fumigatus.The mice were subsequently treated with rapamycin.The protein levels of p-mT OR,TLR4,and IL-1β in normal and infected corneal tissue were measured by Western blot.The TLR4 and IL-1β m RNA levels were determined by real-time polymerase chain reaction(PCR).RESULTS:In C57 BL/6 mice,rapamycin treatment decreased the clinical scores and production of the pro-inflammatory cytokine,IL-1β.The expression of TLR4,stimulated by A.fumigatus,was reduced as well when the mT OR signaling pathway was suppressed by rapamycin.CONCLUSION:Rapamycin is beneficial for the outcome of fungal keratitis and has an inhibitory effect expression of the inflammatory cytokine IL-1β.The inhibitory effect on IL-1β expression can be associated with the mT OR/TLR4 signaling pathway in A.fumigatus infection in mice.展开更多
Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is ...Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is the only available systemic agent for treatment of HCC that improves overall survival for patients with advanced stage disease; unfortunately, an effective second-line agent for the treatment of progressive or sorafenib-resistant HCC has yet to be identified. This review focuses on components of the mammalian target of rapamycin(mTOR) pathway, its role in HCC pathogenesis, and dual mTOR inhibition as a therapeutic option with potential efficacy in advanced HCC. There are several important upstream and downstream signals in the mTOR pathway, and alternative tumor-promoting pathways are known to exist beyond mTORC1 inhibition in HCC. This review analyzes the relationships of the upstream and downstream regulators of mTORC1 and mTORC2 signaling; it also provides a comprehensive global picture of the interaction between mTORC1 and mTORC2 which demonstrates the pre-clinical relevance of the mTOR pathway in HCC pathogenesis and progression. Finally, it provides scientific rationale for dual mTORC1 and mTORC2 inhibition in the treatment of HCC. Clinical trials utilizing mTORC1 inhibitors and dual mTOR inhibitors in HCC are discussed as well. The mTOR pathway is comprised of two main components, mTORC1 and mTORC2; each has a unique role in the pathogenesis and progression of HCC. In phase Ⅲ studies, mTORC1 inhibitors demonstrate anti-tumor ac-tivity in advanced HCC, but dual mTOR(mTORC1 and mTORC2) inhibition has greater therapeutic potential in HCC treatment which warrants further clinical investigation.展开更多
The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord ...The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord injury, rat models of spinal cord injury were established by modified Allen's stall method and interfered for 7 days by intraperitoneal administration of mTOR activator adenosine triphosphate and mTOR kinase inhibitor rapamycin. At 1-4 weeks after spinal cord injury induction, the Basso, Beattie and Bresnahan locomotor rating scale was used to evaluate rat locomotor function, and immunohistochemical staining and western blot analysis were used to detect the expression of nestin (neural stem cell marker), neuronal nuclei (neuronal marker), neuron specific enolase, neurofilament protein 200 (axonal marker), glial fibrillary acidic protein (astrocyte marker), Akt, mTOR and signal transduction and activator of transcription 3 (STAT3). Results showed that adenosine triphosphate-mediated Akt/mTOR/STAT3 pathway increased endogenous neural stem cells, induced neurogenesis and axonal growth, inhibited excessive astrogliosis and improved the locomotor function of rats with spinal cord injury.展开更多
The obesity epidemic imposes a significant health burden on human beings.Current understanding of the mechanisms underlying the development of obesity is incomplete and contemporary treatment is often ineffective.Gast...The obesity epidemic imposes a significant health burden on human beings.Current understanding of the mechanisms underlying the development of obesity is incomplete and contemporary treatment is often ineffective.Gastrointestinal hormones are important regulators of food intake and energy metabolism.Previous studies indicate that the mammalian target of rapamycin signaling pathway in the gastric mucosa is crucially involved in fuel sensing in the gastrointestinal tract and plays a critical role in the coordination of nutrient availability and ingestive behavior via the production of gastric hormones.As an important component of the brain-gut axis regulating food intake and energy homeostasis,energy sensing in the gastrointestinal tract may provide a novel insight into our understanding of the precise coordination between the organism and cel-lular energy state.展开更多
BACKGROUND With continuous advancement of industrial society,environmental pollution has become more and more serious.There has been an increase in infertility caused by environmental factors.Nonylphenol(NP)is a stabl...BACKGROUND With continuous advancement of industrial society,environmental pollution has become more and more serious.There has been an increase in infertility caused by environmental factors.Nonylphenol(NP)is a stable degradation product widely used in daily life and production and has been proven to affect male fertility.However,the underlying mechanisms therein are unclear.Thus,it is necessary to study the effect and mechanism of NP on spermatogonial stem cells(SSCs).AIM To investigate the cytotoxic effect of NP on SSCs via the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR)pathway.METHODS SSCs were treated with NP at 0,10,20 or 30μmol.MTT assay was performed to evaluate the effect of NP on the proliferation of SSCs.Flow cytometry was conducted to measure SSC apoptosis.The expression of Bad,Bcl-2,cytochrome-c,pro-Caspase 9,SOX-2,OCT-4,Nanog,Nanos3,Stra8,Scp3,GFRα1,CD90,VASA,Nanos2,KIT,PLZF and PI3K/AKT/mTOR-related proteins was observed by western blot,and the mRNA expression of SOX-2,OCT-4 and Nanog was detected by quantitative reverse transcription polymerase chain reaction.RESULTS Compared with untreated cells(0μmol NP),SSCs treated with NP at all concentrations showed a decrease in cell proliferation and expression of Bcl-2,Nanog,OCT-4,SOX-2,Nanos3,Stra8,Scp3,GFRα1,CD90,VASA,Nanos2,KIT,and PLZF(P<0.05),whereas the expression of Bad,cytochrome-c,and pro-Caspase 9 increased significantly(P<0.05).We further examined the PI3K/AKT/mTOR pathway and found that the phosphorylation of PI3K,AKT,mTORC1,and S6K was significantly decreased by NP at all concentrations compared to that in untreated SSCs(P<0.05).NP exerted the greatest effect at 30μmol among all NP concentrations.CONCLUSION NP attenuated the proliferation,differentiation and stemness maintenance of SSCs while promoting apoptosis and oxidative stress.The associated mechanism may be related to the PI3K/AKT/mTOR pathway.展开更多
Deregulation of the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)- mammalian target of rapamycin(m TOR) signaling pathway is one of the most commonlyinvolved pathways in tumorigenesis. It has also been reporte...Deregulation of the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)- mammalian target of rapamycin(m TOR) signaling pathway is one of the most commonlyinvolved pathways in tumorigenesis. It has also been reported as altered in neuroendocrine tumors(NETs). m TOR inhibitors used in clinical practice are derived from rapamycin,an anti-cancer agent also used as an immunosuppressor after organ transplantation. Everolimus and temsirolimus are the two rapamycin-derived m TOR inhibitors used in NETs. Notably everolimus has been approved in advanced progressive well/moderatelydifferentiated pancreatic NETs(p NETs). It inhibits specifically the m TORC1 subunit of m TOR,not interacting with m TORC2. Although everolimus produced a significant prolongation of progression-free survival a number of patients with p NETs do not benefit from the drug due to early or late progression. Two supposed mechanisms of resistance to m TOR inhibitors are Akt and PI3 K activation,by means of m TORC2 and insulin growth factor(IGF)- IGF receptor signaling,respectively. BEZ235 is a multi-targeted inhibitor binding to PI3 K,m TORC1 and m TORC2,therefore potentially turning off all the supposed molecular targets of resistance to everolimus. The two clinical trials designed in p NETs were stopped early due to unmet statistical endpoint and the global clinical development of BEZ235 was also halted. Tolerability of this drug was challenging and conditioned the feasibility of therapy. The BEZ experience is an example of the huge difference between the preclinical and clinical setting and prompts us to pay more attention to the phase Ⅰ step of clinical development and the design of phase Ⅱ clinical trials.展开更多
BACKGROUND Mammalian target of rapamycin(mTOR)inhibitors have been shown to reduce the risk of tumour recurrence after liver transplantation for hepatocellular carcinoma(HCC).However,their role in established post-tra...BACKGROUND Mammalian target of rapamycin(mTOR)inhibitors have been shown to reduce the risk of tumour recurrence after liver transplantation for hepatocellular carcinoma(HCC).However,their role in established post-transplant HCC recurrence is uncertain.AIM To investigate whether mTOR inhibitor offers a survival benefit in posttransplant HCC recurrence.METHODS A retrospective study of 143 patients who developed HCC recurrence after liver transplantation was performed.They were divided into 2 groups based on whether they had received mTOR inhibitor-based immunosuppression.The primary endpoint was post-recurrence survival.RESULTS Seventy-nine(55%)patients received an mTOR inhibitor-based immunosuppressive regime,while 64(45%)patients did not.The mTOR inhibitor group had a lower number of recurrent tumours(2 vs 5,P=0.02)and received more active treatments including radiotherapy(39 vs 22%,P=0.03)and targeted therapy(59 vs 23%,P<0.001).The median post-recurrence survival was 21.0±4.1 mo in the mTOR inhibitor group and 11.2±2.5 mo in the control group.Multivariate Cox regression analysis confirmed that mTOR inhibitor therapy was independently associated with improved post-recurrence survival(P=0.04,OR=0.482,95%CI:0.241-0.966).The number of recurrent tumours and use of other treatment modalities did not affect survival.No survival difference was observed between mTOR inhibitor monotherapy and combination therapy with calcineurin inhibitor.CONCLUSION mTOR inhibitors prolonged survival after post-transplant HCC recurrence.展开更多
Cancer after transplantation is the third cause of death and one of the more relevant comorbidities. Aim of this review is to verify the role of different pathogenetic mechanisms in cancer development in transplant pa...Cancer after transplantation is the third cause of death and one of the more relevant comorbidities. Aim of this review is to verify the role of different pathogenetic mechanisms in cancer development in transplant patients and in general population as well. In particular has been outlined the different role exerted by two different families of drug as calcineurin inhibitor and mammalian target of rapamycin(m TOR) inhibitor. The role of m TOR pathways in cell homeostasis is complex but enough clear. As a consequence the m TOR pathway deregulation is involved in the genesis of several cancers. Hence the relevant role of m TOR inhibitors. The authors review the complex mechanism of action of m TOR inhibitors, not only for what concerns the immune system but also other cells as endothelial, smooth muscle and epithelial cells. The mechanism of action is still now not completely defined and understood. It implies the inhibition of m TOR pathway at different levels, but mainly at level of the phosphorylation of several intracellular kinases that contribute to activate m TOR complex. Many prospective and retrospective studies in transplant patients document the antineoplastic role of m TOR inhibition. More recently m TOR inhibitors proven to be effective in the treatment of some cancers also in general population. Kidney cancers, neuroendocrine tumors and liver cancers seem to be the most sensitive to these drugs. Best results are obtained with a combination treatment, targeting the m TOR pathway at different levels.展开更多
AIM: To investigate the angiographic and volumetric effects of mammalian target of rapamycin(m TOR) inhibitors on angiomyolipomas(AMLs) in a case series of patients with tuberous sclerosis complex.METHODS: All patient...AIM: To investigate the angiographic and volumetric effects of mammalian target of rapamycin(m TOR) inhibitors on angiomyolipomas(AMLs) in a case series of patients with tuberous sclerosis complex.METHODS: All patients who underwent catheter angiography prior to and following m TOR inhibitor therapy(n = 3) were evaluated. All cross-sectional imaging studies were analyzed with three-dimensional volumetrics, and tumor volume curves for all three tissue compartments(soft tissue, vascular, and fat) were generated. Segmentation analysis tools were used to automatically create a region of interest(ROI) circumscribing the AML. On magnetic resonance images, the "fat only" map calculated from the in- and opposed-phase gradient recalled echo sequences was used to quantify fat volume within tumors. Tumor vascularity was measured by applying a thresholding toolwithin the ROI on post-contrast subtraction images. On computed tomography images, volume histogram analysis of Hounsfield unit was performed to quantify tumor tissue composition. The angiography procedures were also reviewed, and tumor vascularity based on pre-embolization angiography was characterized in a semi-quantitative manner. RESULTS: Patient 1 presented at the age of 15 with a 6.8 cm right lower pole AML and a 4.0 cm right upper pole AML. Embolization was performed of both tumors, and after a few years of size control, the tumors began to grow, and the patient was initiated on m TOR inhibitor therapy. There was an immediate reduction in the size of both lesions. The patient then underwent repeat embolization and discontinuation of m TOR inhibition, after which point there was a substantial regrowth in both tumors across all tissue compartments. Patient 2 presented at the age of 18 with a right renal AML. Following a brief period of tumor reduction after embolization, she was initiated on m TOR inhibitor therapy, with successful reduction in tumor size across all tissue compartments. As with patient 1, however, there was immediate rebound growth following discontinuation of inhibitor therapy, without sustained control despite repeat embolization. patient 3 presented at the age of 5 with a left renal AML and underwent two embolization procedures without lasting effect prior to starting m TOR inhibition. As with patients 1 and 2, following discontinuation of therapy, there was immediate rebound growth of the tumor. Repeat embolization, however, was notable for a substantial reduction in intratumoral aneurysms and vascularity.CONCLUSION: AML volume reduction as well as posttreatment rebound growth due to m TOR inhibitors involves all three tissue components of the tumor.展开更多
The mammalian target of rapamycin(mTOR)acts in two structurally and functionally distinct protein complexes,mTOR complex 1(mTORC1)and mTOR complex 2(mTORC2).Upon deregulation,activated mTOR signaling is associated wit...The mammalian target of rapamycin(mTOR)acts in two structurally and functionally distinct protein complexes,mTOR complex 1(mTORC1)and mTOR complex 2(mTORC2).Upon deregulation,activated mTOR signaling is associated with multiple processes involved in tumor growth and metastasis.Compared with mTORC1,much less is known about mTORC2 in cancer,mainly because of the unavailability of a selective inhibitor.However,existing data suggest that mTORC2 with its two distinct subunits Rictor and mSin1 might play a more important role than assumed so far.It is one of the key effectors of the PI3K/AKT/mTOR pathway and stimulates cell growth,cell survival,metabolism,and cytoskeletal organization.It is not only implicated in tumor progression,metastasis,and the tumor microenvironment but also in resistance to therapy.Rictor,the central subunit of mTORC2,was found to be upregulated in different kinds of cancers and is associated with advanced tumor stages and a bad prognosis.Moreover,AKT,the main downstream regulator of mTORC2/Rictor,is one of the most highly activated proteins in cancer.Primary and secondary liver cancer are major problems for current cancer therapy due to the lack of specific medical treatment,emphasizing the need for further therapeutic options.This review,therefore,summarizes the role of mTORC2/Rictor in cancer,with special focus on primary liver cancer but also on liver metastases.展开更多
AIM To consolidate the present evidence of effectiveness in renal functioning and graft survival following early introduction of mammalian target of rapamycin(m TOR) inhibitors with or without calcineurin inhibitors(C...AIM To consolidate the present evidence of effectiveness in renal functioning and graft survival following early introduction of mammalian target of rapamycin(m TOR) inhibitors with or without calcineurin inhibitors(CNIs) in renal transplant recipients.METHODS We analysed the current literature following PROSPERO approval describing the role of immunosuppressive agent, m TOR inhibitors as an alternative to CNI within six months of renal transplant by searching the Pub Med, EMBASE, Cochrane, Crossref, and Scopus using Me SH terms. RESULTS Six articles of early withdrawal of CNI and introduction of m TOR-inhibitors within six months of renal transplantation were sought. Glomerular filtration rate(GFR) and serum creatinine were significantly better in m TOR inhibitor group with equivalent survival at 12 mo, even though Biopsy Proven Acute rejection was significantly higher in m TOR-inhibitor group. CONCLUSION The evidence reviewed in this meta-analysis suggests that early introduction m TOR-inhibitors substantial CNI minimization. The m TOR inhibitors such as everolimus and sirolimus, due to their complementary mechanism of action and favourable nephrotoxicity profile; better glomerular filtration, lower serum creatinine with equivalent survival. Having said that, due to the higher rejection rate, may influence the use of these regimens to patients with moderate to high immunological risk patients.展开更多
The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement diso...The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement disorders, such as a tremor at rest, rigidity of the limbs, bradykinesia, and postural instability (Kim et al., 2011; Kim et al., 2012; Burke and O'Malley, 2013; Leem et al., 2014; Namet al., 2014).展开更多
AIM: To explore the role of mammalian target of rapamycin(m TOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition.METHODS: Male albino Wistar rats wei...AIM: To explore the role of mammalian target of rapamycin(m TOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition.METHODS: Male albino Wistar rats weighing 100-120 g were treated with tetrachloride carbon(CCl_4) for 8 wk to induce cirrhosis. Subsequently, animals were administered rapamycin(2 mg/kg per day). The QT_c intervals were calculated in a 5-min electrocardiogram. Then, the left ventricular papillary muscles wereisolated to examine inotropic responsiveness to β-adrenergic stimulation using a standard organ bath equipped by Powerlab system. Phosphorylated-m TOR localization in left ventricles was immunohistochemically assessed, and ventricular tumor necrosis factor(TNF)-α was measured. Western blot was used to measure levels of ventricular phosphorylated-m TOR protein.RESULTS: Cirrhosis was confirmed by hematoxylin and eosin staining of liver tissues, visual observation of lethargy, weight loss, jaundice, brown urine, ascites, liver stiffness, and a significant increase of spleen weight(P < 0.001). A significant prolongation in QTc intervals occurred in cirrhotic rats exposed to CCl_4(P < 0.001), while this prolongation was decreased with rapamycin treatment(P < 0.01). CCl_4-induced cirrhosis caused a significant decrease of contractile responsiveness to isoproterenol stimulation and a significant increase in cardiac TNF-α. These findings were correlated with data from western blot and immunohistochemical studies on phosphorylated-m TOR expression in left ventricles. Phosphorylated-m TOR was significantly enhanced in cirrhotic rats, especially in the endothelium, compared to controls. Rapamycin treatment significantly increased contractile force and myocardial localization of phosphorylated-m TOR and decreased cardiac TNF-α concentration compared to cirrhotic rats with no treatment. CONCLUSION: In this study, we demonstrated a potential role for cardiac m TOR in the pathophysiology of cirrhotic cardiomyopathy. Rapamycin normalized the inotropic effect and altered phosphorylated-m TOR expression and myocardial localization in cirrhotic rats.展开更多
The activation of mammalian target of rapamycin (mTOR) signaling pathway in endometrial carcinoma cells Ishikawa and HEC-1A was investigated. The expression of mTOR was detected by confocal fluorescence microscopy i...The activation of mammalian target of rapamycin (mTOR) signaling pathway in endometrial carcinoma cells Ishikawa and HEC-1A was investigated. The expression of mTOR was detected by confocal fluorescence microscopy in Ishikawa and HEC-1A cells. The mRNA levels of PTEN and mTOR, the downstream substrate S6K1 and 4E-BP1 protein were assayed by RT-PCR and Western blot, respectively. The expression of PTEN in Ishikawa cells was deficient, but intact in HEC-1A cells respectively (P〈0.01). There was mTOR expression in both Ishikawa and HEC-1A cells and the phosporylated substrate levels in Ishikawa cells were higher than those in HEC-1A cells (P〈0.05). mTOR signaling pathway is activated in two endometrial carcinoma cell strains and the status of activation is related with PTEN expression of the cells. The activation level of mTOR is higher in PTEN-deficient endometrial carcinoma cells than that in PTEN-intact endometrial carcinoma cells.展开更多
Inflammatory bowel diseases(IBDs),with blurred etiology,show a rising trend and are of global concern.Of various factors involved in IBD pathogenesis and development,inflammation has been shown to play a major role.Re...Inflammatory bowel diseases(IBDs),with blurred etiology,show a rising trend and are of global concern.Of various factors involved in IBD pathogenesis and development,inflammation has been shown to play a major role.Recognition of the molecular and cellular pathways that induce IBD is an emerging subject to develop targeted therapies.Mammalian target of rapamycin(mTOR)is one the most common receptors of many inflammatory pathways,including that of IBD.To this end,we intend to overview the mTOR inhibitors for their possible efficacy in present and future approaches to treatment of IBD.展开更多
基金Supported by National Natural Science Foundation of China,No.82360329Inner Mongolia Medical University General Project,No.YKD2023MS047Inner Mongolia Health Commission Science and Technology Plan Project,No.202201275.
文摘BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.
基金supported by the tenth batch of"3221"industrial innovation and scientific research projects in Bengbu City(beng talent[2020]No.8)the 2021 Bengbu Medical College Science and Technology Project[Natural Science,Project Number:2021byzd217].
文摘Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
基金Supported by the National Natural Science Foundation of China(No.81470609No.81500695)
文摘AIM:To elucidate the effect of rapamycin on regulating the production of interleukin(IL)-1β in Aspergillus fumigatus(A.fumigatus)-induced keratitis and to verify whether the expression of IL-1β in A.fumigatus keratitis is associated with the mammalian target of rapamycin(mT OR)/Toll-like receptor 4(TLR4) signaling pathway.METHODS:Fungal keratitis mouse models of susceptible C57 BL/6 mice were established using A.fumigatus.The mice were subsequently treated with rapamycin.The protein levels of p-mT OR,TLR4,and IL-1β in normal and infected corneal tissue were measured by Western blot.The TLR4 and IL-1β m RNA levels were determined by real-time polymerase chain reaction(PCR).RESULTS:In C57 BL/6 mice,rapamycin treatment decreased the clinical scores and production of the pro-inflammatory cytokine,IL-1β.The expression of TLR4,stimulated by A.fumigatus,was reduced as well when the mT OR signaling pathway was suppressed by rapamycin.CONCLUSION:Rapamycin is beneficial for the outcome of fungal keratitis and has an inhibitory effect expression of the inflammatory cytokine IL-1β.The inhibitory effect on IL-1β expression can be associated with the mT OR/TLR4 signaling pathway in A.fumigatus infection in mice.
文摘Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is the only available systemic agent for treatment of HCC that improves overall survival for patients with advanced stage disease; unfortunately, an effective second-line agent for the treatment of progressive or sorafenib-resistant HCC has yet to be identified. This review focuses on components of the mammalian target of rapamycin(mTOR) pathway, its role in HCC pathogenesis, and dual mTOR inhibition as a therapeutic option with potential efficacy in advanced HCC. There are several important upstream and downstream signals in the mTOR pathway, and alternative tumor-promoting pathways are known to exist beyond mTORC1 inhibition in HCC. This review analyzes the relationships of the upstream and downstream regulators of mTORC1 and mTORC2 signaling; it also provides a comprehensive global picture of the interaction between mTORC1 and mTORC2 which demonstrates the pre-clinical relevance of the mTOR pathway in HCC pathogenesis and progression. Finally, it provides scientific rationale for dual mTORC1 and mTORC2 inhibition in the treatment of HCC. Clinical trials utilizing mTORC1 inhibitors and dual mTOR inhibitors in HCC are discussed as well. The mTOR pathway is comprised of two main components, mTORC1 and mTORC2; each has a unique role in the pathogenesis and progression of HCC. In phase Ⅲ studies, mTORC1 inhibitors demonstrate anti-tumor ac-tivity in advanced HCC, but dual mTOR(mTORC1 and mTORC2) inhibition has greater therapeutic potential in HCC treatment which warrants further clinical investigation.
文摘The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord injury, rat models of spinal cord injury were established by modified Allen's stall method and interfered for 7 days by intraperitoneal administration of mTOR activator adenosine triphosphate and mTOR kinase inhibitor rapamycin. At 1-4 weeks after spinal cord injury induction, the Basso, Beattie and Bresnahan locomotor rating scale was used to evaluate rat locomotor function, and immunohistochemical staining and western blot analysis were used to detect the expression of nestin (neural stem cell marker), neuronal nuclei (neuronal marker), neuron specific enolase, neurofilament protein 200 (axonal marker), glial fibrillary acidic protein (astrocyte marker), Akt, mTOR and signal transduction and activator of transcription 3 (STAT3). Results showed that adenosine triphosphate-mediated Akt/mTOR/STAT3 pathway increased endogenous neural stem cells, induced neurogenesis and axonal growth, inhibited excessive astrogliosis and improved the locomotor function of rats with spinal cord injury.
基金Supported by Grants from the National Natural Science Foundation of China,No.30971434,30871194,30971085 and 81030012Program for New Century Excellent Talents in University,Beijing Natural Science Foundation,No.7112080
文摘The obesity epidemic imposes a significant health burden on human beings.Current understanding of the mechanisms underlying the development of obesity is incomplete and contemporary treatment is often ineffective.Gastrointestinal hormones are important regulators of food intake and energy metabolism.Previous studies indicate that the mammalian target of rapamycin signaling pathway in the gastric mucosa is crucially involved in fuel sensing in the gastrointestinal tract and plays a critical role in the coordination of nutrient availability and ingestive behavior via the production of gastric hormones.As an important component of the brain-gut axis regulating food intake and energy homeostasis,energy sensing in the gastrointestinal tract may provide a novel insight into our understanding of the precise coordination between the organism and cel-lular energy state.
基金Health and Family Planning Committee Joint Fund Project of Hubei Province,No.WJ2018H0020Fundamental Research Funds for the Central Universities,No.2042016kf0187 and No.2042017kf0068Zhongnan Hospital of Wuhan University Science,Technology and Innovation Seed Fund,No.znpy2016022.
文摘BACKGROUND With continuous advancement of industrial society,environmental pollution has become more and more serious.There has been an increase in infertility caused by environmental factors.Nonylphenol(NP)is a stable degradation product widely used in daily life and production and has been proven to affect male fertility.However,the underlying mechanisms therein are unclear.Thus,it is necessary to study the effect and mechanism of NP on spermatogonial stem cells(SSCs).AIM To investigate the cytotoxic effect of NP on SSCs via the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR)pathway.METHODS SSCs were treated with NP at 0,10,20 or 30μmol.MTT assay was performed to evaluate the effect of NP on the proliferation of SSCs.Flow cytometry was conducted to measure SSC apoptosis.The expression of Bad,Bcl-2,cytochrome-c,pro-Caspase 9,SOX-2,OCT-4,Nanog,Nanos3,Stra8,Scp3,GFRα1,CD90,VASA,Nanos2,KIT,PLZF and PI3K/AKT/mTOR-related proteins was observed by western blot,and the mRNA expression of SOX-2,OCT-4 and Nanog was detected by quantitative reverse transcription polymerase chain reaction.RESULTS Compared with untreated cells(0μmol NP),SSCs treated with NP at all concentrations showed a decrease in cell proliferation and expression of Bcl-2,Nanog,OCT-4,SOX-2,Nanos3,Stra8,Scp3,GFRα1,CD90,VASA,Nanos2,KIT,and PLZF(P<0.05),whereas the expression of Bad,cytochrome-c,and pro-Caspase 9 increased significantly(P<0.05).We further examined the PI3K/AKT/mTOR pathway and found that the phosphorylation of PI3K,AKT,mTORC1,and S6K was significantly decreased by NP at all concentrations compared to that in untreated SSCs(P<0.05).NP exerted the greatest effect at 30μmol among all NP concentrations.CONCLUSION NP attenuated the proliferation,differentiation and stemness maintenance of SSCs while promoting apoptosis and oxidative stress.The associated mechanism may be related to the PI3K/AKT/mTOR pathway.
文摘Deregulation of the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)- mammalian target of rapamycin(m TOR) signaling pathway is one of the most commonlyinvolved pathways in tumorigenesis. It has also been reported as altered in neuroendocrine tumors(NETs). m TOR inhibitors used in clinical practice are derived from rapamycin,an anti-cancer agent also used as an immunosuppressor after organ transplantation. Everolimus and temsirolimus are the two rapamycin-derived m TOR inhibitors used in NETs. Notably everolimus has been approved in advanced progressive well/moderatelydifferentiated pancreatic NETs(p NETs). It inhibits specifically the m TORC1 subunit of m TOR,not interacting with m TORC2. Although everolimus produced a significant prolongation of progression-free survival a number of patients with p NETs do not benefit from the drug due to early or late progression. Two supposed mechanisms of resistance to m TOR inhibitors are Akt and PI3 K activation,by means of m TORC2 and insulin growth factor(IGF)- IGF receptor signaling,respectively. BEZ235 is a multi-targeted inhibitor binding to PI3 K,m TORC1 and m TORC2,therefore potentially turning off all the supposed molecular targets of resistance to everolimus. The two clinical trials designed in p NETs were stopped early due to unmet statistical endpoint and the global clinical development of BEZ235 was also halted. Tolerability of this drug was challenging and conditioned the feasibility of therapy. The BEZ experience is an example of the huge difference between the preclinical and clinical setting and prompts us to pay more attention to the phase Ⅰ step of clinical development and the design of phase Ⅱ clinical trials.
文摘BACKGROUND Mammalian target of rapamycin(mTOR)inhibitors have been shown to reduce the risk of tumour recurrence after liver transplantation for hepatocellular carcinoma(HCC).However,their role in established post-transplant HCC recurrence is uncertain.AIM To investigate whether mTOR inhibitor offers a survival benefit in posttransplant HCC recurrence.METHODS A retrospective study of 143 patients who developed HCC recurrence after liver transplantation was performed.They were divided into 2 groups based on whether they had received mTOR inhibitor-based immunosuppression.The primary endpoint was post-recurrence survival.RESULTS Seventy-nine(55%)patients received an mTOR inhibitor-based immunosuppressive regime,while 64(45%)patients did not.The mTOR inhibitor group had a lower number of recurrent tumours(2 vs 5,P=0.02)and received more active treatments including radiotherapy(39 vs 22%,P=0.03)and targeted therapy(59 vs 23%,P<0.001).The median post-recurrence survival was 21.0±4.1 mo in the mTOR inhibitor group and 11.2±2.5 mo in the control group.Multivariate Cox regression analysis confirmed that mTOR inhibitor therapy was independently associated with improved post-recurrence survival(P=0.04,OR=0.482,95%CI:0.241-0.966).The number of recurrent tumours and use of other treatment modalities did not affect survival.No survival difference was observed between mTOR inhibitor monotherapy and combination therapy with calcineurin inhibitor.CONCLUSION mTOR inhibitors prolonged survival after post-transplant HCC recurrence.
文摘Cancer after transplantation is the third cause of death and one of the more relevant comorbidities. Aim of this review is to verify the role of different pathogenetic mechanisms in cancer development in transplant patients and in general population as well. In particular has been outlined the different role exerted by two different families of drug as calcineurin inhibitor and mammalian target of rapamycin(m TOR) inhibitor. The role of m TOR pathways in cell homeostasis is complex but enough clear. As a consequence the m TOR pathway deregulation is involved in the genesis of several cancers. Hence the relevant role of m TOR inhibitors. The authors review the complex mechanism of action of m TOR inhibitors, not only for what concerns the immune system but also other cells as endothelial, smooth muscle and epithelial cells. The mechanism of action is still now not completely defined and understood. It implies the inhibition of m TOR pathway at different levels, but mainly at level of the phosphorylation of several intracellular kinases that contribute to activate m TOR complex. Many prospective and retrospective studies in transplant patients document the antineoplastic role of m TOR inhibition. More recently m TOR inhibitors proven to be effective in the treatment of some cancers also in general population. Kidney cancers, neuroendocrine tumors and liver cancers seem to be the most sensitive to these drugs. Best results are obtained with a combination treatment, targeting the m TOR pathway at different levels.
文摘AIM: To investigate the angiographic and volumetric effects of mammalian target of rapamycin(m TOR) inhibitors on angiomyolipomas(AMLs) in a case series of patients with tuberous sclerosis complex.METHODS: All patients who underwent catheter angiography prior to and following m TOR inhibitor therapy(n = 3) were evaluated. All cross-sectional imaging studies were analyzed with three-dimensional volumetrics, and tumor volume curves for all three tissue compartments(soft tissue, vascular, and fat) were generated. Segmentation analysis tools were used to automatically create a region of interest(ROI) circumscribing the AML. On magnetic resonance images, the "fat only" map calculated from the in- and opposed-phase gradient recalled echo sequences was used to quantify fat volume within tumors. Tumor vascularity was measured by applying a thresholding toolwithin the ROI on post-contrast subtraction images. On computed tomography images, volume histogram analysis of Hounsfield unit was performed to quantify tumor tissue composition. The angiography procedures were also reviewed, and tumor vascularity based on pre-embolization angiography was characterized in a semi-quantitative manner. RESULTS: Patient 1 presented at the age of 15 with a 6.8 cm right lower pole AML and a 4.0 cm right upper pole AML. Embolization was performed of both tumors, and after a few years of size control, the tumors began to grow, and the patient was initiated on m TOR inhibitor therapy. There was an immediate reduction in the size of both lesions. The patient then underwent repeat embolization and discontinuation of m TOR inhibition, after which point there was a substantial regrowth in both tumors across all tissue compartments. Patient 2 presented at the age of 18 with a right renal AML. Following a brief period of tumor reduction after embolization, she was initiated on m TOR inhibitor therapy, with successful reduction in tumor size across all tissue compartments. As with patient 1, however, there was immediate rebound growth following discontinuation of inhibitor therapy, without sustained control despite repeat embolization. patient 3 presented at the age of 5 with a left renal AML and underwent two embolization procedures without lasting effect prior to starting m TOR inhibition. As with patients 1 and 2, following discontinuation of therapy, there was immediate rebound growth of the tumor. Repeat embolization, however, was notable for a substantial reduction in intratumoral aneurysms and vascularity.CONCLUSION: AML volume reduction as well as posttreatment rebound growth due to m TOR inhibitors involves all three tissue components of the tumor.
文摘The mammalian target of rapamycin(mTOR)acts in two structurally and functionally distinct protein complexes,mTOR complex 1(mTORC1)and mTOR complex 2(mTORC2).Upon deregulation,activated mTOR signaling is associated with multiple processes involved in tumor growth and metastasis.Compared with mTORC1,much less is known about mTORC2 in cancer,mainly because of the unavailability of a selective inhibitor.However,existing data suggest that mTORC2 with its two distinct subunits Rictor and mSin1 might play a more important role than assumed so far.It is one of the key effectors of the PI3K/AKT/mTOR pathway and stimulates cell growth,cell survival,metabolism,and cytoskeletal organization.It is not only implicated in tumor progression,metastasis,and the tumor microenvironment but also in resistance to therapy.Rictor,the central subunit of mTORC2,was found to be upregulated in different kinds of cancers and is associated with advanced tumor stages and a bad prognosis.Moreover,AKT,the main downstream regulator of mTORC2/Rictor,is one of the most highly activated proteins in cancer.Primary and secondary liver cancer are major problems for current cancer therapy due to the lack of specific medical treatment,emphasizing the need for further therapeutic options.This review,therefore,summarizes the role of mTORC2/Rictor in cancer,with special focus on primary liver cancer but also on liver metastases.
文摘AIM To consolidate the present evidence of effectiveness in renal functioning and graft survival following early introduction of mammalian target of rapamycin(m TOR) inhibitors with or without calcineurin inhibitors(CNIs) in renal transplant recipients.METHODS We analysed the current literature following PROSPERO approval describing the role of immunosuppressive agent, m TOR inhibitors as an alternative to CNI within six months of renal transplant by searching the Pub Med, EMBASE, Cochrane, Crossref, and Scopus using Me SH terms. RESULTS Six articles of early withdrawal of CNI and introduction of m TOR-inhibitors within six months of renal transplantation were sought. Glomerular filtration rate(GFR) and serum creatinine were significantly better in m TOR inhibitor group with equivalent survival at 12 mo, even though Biopsy Proven Acute rejection was significantly higher in m TOR-inhibitor group. CONCLUSION The evidence reviewed in this meta-analysis suggests that early introduction m TOR-inhibitors substantial CNI minimization. The m TOR inhibitors such as everolimus and sirolimus, due to their complementary mechanism of action and favourable nephrotoxicity profile; better glomerular filtration, lower serum creatinine with equivalent survival. Having said that, due to the higher rejection rate, may influence the use of these regimens to patients with moderate to high immunological risk patients.
文摘The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement disorders, such as a tremor at rest, rigidity of the limbs, bradykinesia, and postural instability (Kim et al., 2011; Kim et al., 2012; Burke and O'Malley, 2013; Leem et al., 2014; Namet al., 2014).
基金Supported by Tehran University of Medical Sciences and Health Services grant,No.92033024196
文摘AIM: To explore the role of mammalian target of rapamycin(m TOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition.METHODS: Male albino Wistar rats weighing 100-120 g were treated with tetrachloride carbon(CCl_4) for 8 wk to induce cirrhosis. Subsequently, animals were administered rapamycin(2 mg/kg per day). The QT_c intervals were calculated in a 5-min electrocardiogram. Then, the left ventricular papillary muscles wereisolated to examine inotropic responsiveness to β-adrenergic stimulation using a standard organ bath equipped by Powerlab system. Phosphorylated-m TOR localization in left ventricles was immunohistochemically assessed, and ventricular tumor necrosis factor(TNF)-α was measured. Western blot was used to measure levels of ventricular phosphorylated-m TOR protein.RESULTS: Cirrhosis was confirmed by hematoxylin and eosin staining of liver tissues, visual observation of lethargy, weight loss, jaundice, brown urine, ascites, liver stiffness, and a significant increase of spleen weight(P < 0.001). A significant prolongation in QTc intervals occurred in cirrhotic rats exposed to CCl_4(P < 0.001), while this prolongation was decreased with rapamycin treatment(P < 0.01). CCl_4-induced cirrhosis caused a significant decrease of contractile responsiveness to isoproterenol stimulation and a significant increase in cardiac TNF-α. These findings were correlated with data from western blot and immunohistochemical studies on phosphorylated-m TOR expression in left ventricles. Phosphorylated-m TOR was significantly enhanced in cirrhotic rats, especially in the endothelium, compared to controls. Rapamycin treatment significantly increased contractile force and myocardial localization of phosphorylated-m TOR and decreased cardiac TNF-α concentration compared to cirrhotic rats with no treatment. CONCLUSION: In this study, we demonstrated a potential role for cardiac m TOR in the pathophysiology of cirrhotic cardiomyopathy. Rapamycin normalized the inotropic effect and altered phosphorylated-m TOR expression and myocardial localization in cirrhotic rats.
文摘The activation of mammalian target of rapamycin (mTOR) signaling pathway in endometrial carcinoma cells Ishikawa and HEC-1A was investigated. The expression of mTOR was detected by confocal fluorescence microscopy in Ishikawa and HEC-1A cells. The mRNA levels of PTEN and mTOR, the downstream substrate S6K1 and 4E-BP1 protein were assayed by RT-PCR and Western blot, respectively. The expression of PTEN in Ishikawa cells was deficient, but intact in HEC-1A cells respectively (P〈0.01). There was mTOR expression in both Ishikawa and HEC-1A cells and the phosporylated substrate levels in Ishikawa cells were higher than those in HEC-1A cells (P〈0.05). mTOR signaling pathway is activated in two endometrial carcinoma cell strains and the status of activation is related with PTEN expression of the cells. The activation level of mTOR is higher in PTEN-deficient endometrial carcinoma cells than that in PTEN-intact endometrial carcinoma cells.
文摘Inflammatory bowel diseases(IBDs),with blurred etiology,show a rising trend and are of global concern.Of various factors involved in IBD pathogenesis and development,inflammation has been shown to play a major role.Recognition of the molecular and cellular pathways that induce IBD is an emerging subject to develop targeted therapies.Mammalian target of rapamycin(mTOR)is one the most common receptors of many inflammatory pathways,including that of IBD.To this end,we intend to overview the mTOR inhibitors for their possible efficacy in present and future approaches to treatment of IBD.