Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurat...Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurations.This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms.Initially,an improved active learning approach is employed to select the most valuable unlabeled samples,which are subsequently submitted for expert labeling.This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set.Then the labeled samples are utilized to train the model for network configuration entity extraction.Furthermore,the multi-head self-attention of the transformer model is enhanced by introducing the Adaptive Weighting method based on the Laplace mixture distribution.This enhancement enables the transformer model to dynamically adapt its focus to words in various positions,displaying exceptional adaptability to abnormal data and further elevating the accuracy of the proposed model.Through comparisons with Random Sampling(RANDOM),Maximum Normalized Log-Probability(MNLP),Least Confidence(LC),Token Entrop(TE),and Entropy Query by Bagging(EQB),the proposed method,Entropy Query by Bagging and Maximum Influence Active Learning(EQBMIAL),achieves comparable performance with only 40% of the samples on both datasets,while other algorithms require 50% of the samples.Furthermore,the entity extraction algorithm with the Adaptive Weighted Multi-head Attention mechanism(AW-MHA)is compared with BILSTM-CRF,Mutil_Attention-Bilstm-Crf,Deep_Neural_Model_NER and BERT_Transformer,achieving precision rates of 75.98% and 98.32% on the two datasets,respectively.Statistical tests demonstrate the statistical significance and effectiveness of the proposed algorithms in this paper.展开更多
Named entity recognition(NER)is a fundamental task of information extraction(IE),and it has attracted considerable research attention in recent years.The abundant annotated English NER datasets have significantly prom...Named entity recognition(NER)is a fundamental task of information extraction(IE),and it has attracted considerable research attention in recent years.The abundant annotated English NER datasets have significantly promoted the NER research in the English field.By contrast,much fewer efforts are made to the Chinese NER research,especially in the scientific domain,due to the scarcity of Chinese NER datasets.To alleviate this problem,we present aChinese scientificNER dataset–SciCN,which contains entity annotations of titles and abstracts derived from 3,500 scientific papers.We manually annotate a total of 62,059 entities,and these entities are classified into six types.Compared to English scientific NER datasets,SciCN has a larger scale and is more diverse,for it not only contains more paper abstracts but these abstracts are derived from more research fields.To investigate the properties of SciCN and provide baselines for future research,we adapt a number of previous state-of-theart Chinese NER models to evaluate SciCN.Experimental results show that SciCN is more challenging than other Chinese NER datasets.In addition,previous studies have proven the effectiveness of using lexicons to enhance Chinese NER models.Motivated by this fact,we provide a scientific domain-specific lexicon.Validation results demonstrate that our lexicon delivers better performance gains than lexicons of other domains.We hope that the SciCN dataset and the lexicon will enable us to benchmark the NER task regarding the Chinese scientific domain and make progress for future research.The dataset and lexicon are available at:https://github.com/yangjingla/SciCN.git.展开更多
Named Entity Recognition(NER)stands as a fundamental task within the field of biomedical text mining,aiming to extract specific types of entities such as genes,proteins,and diseases from complex biomedical texts and c...Named Entity Recognition(NER)stands as a fundamental task within the field of biomedical text mining,aiming to extract specific types of entities such as genes,proteins,and diseases from complex biomedical texts and categorize them into predefined entity types.This process can provide basic support for the automatic construction of knowledge bases.In contrast to general texts,biomedical texts frequently contain numerous nested entities and local dependencies among these entities,presenting significant challenges to prevailing NER models.To address these issues,we propose a novel Chinese nested biomedical NER model based on RoBERTa and Global Pointer(RoBGP).Our model initially utilizes the RoBERTa-wwm-ext-large pretrained language model to dynamically generate word-level initial vectors.It then incorporates a Bidirectional Long Short-Term Memory network for capturing bidirectional semantic information,effectively addressing the issue of long-distance dependencies.Furthermore,the Global Pointer model is employed to comprehensively recognize all nested entities in the text.We conduct extensive experiments on the Chinese medical dataset CMeEE and the results demonstrate the superior performance of RoBGP over several baseline models.This research confirms the effectiveness of RoBGP in Chinese biomedical NER,providing reliable technical support for biomedical information extraction and knowledge base construction.展开更多
Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or d...Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.展开更多
As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate unders...As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information.展开更多
With the help of pre-trained language models,the accuracy of the entity linking task has made great strides in recent years.However,most models with excellent performance require fine-tuning on a large amount of train...With the help of pre-trained language models,the accuracy of the entity linking task has made great strides in recent years.However,most models with excellent performance require fine-tuning on a large amount of training data using large pre-trained language models,which is a hardware threshold to accomplish this task.Some researchers have achieved competitive results with less training data through ingenious methods,such as utilizing information provided by the named entity recognition model.This paper presents a novel semantic-enhancement-based entity linking approach,named semantically enhanced hardware-friendly entity linking(SHEL),which is designed to be hardware friendly and efficient while maintaining good performance.Specifically,SHEL's semantic enhancement approach consists of three aspects:(1)semantic compression of entity descriptions using a text summarization model;(2)maximizing the capture of mention contexts using asymmetric heuristics;(3)calculating a fixed size mention representation through pooling operations.These series of semantic enhancement methods effectively improve the model's ability to capture semantic information while taking into account the hardware constraints,and significantly improve the model's convergence speed by more than 50%compared with the strong baseline model proposed in this paper.In terms of performance,SHEL is comparable to the previous method,with superior performance on six well-established datasets,even though SHEL is trained using a smaller pre-trained language model as the encoder.展开更多
Named Entity Recognition(NER)is crucial for extracting structured information from text.While traditional methods rely on rules,Conditional Random Fields(CRFs),or deep learning,the advent of large-scale Pre-trained La...Named Entity Recognition(NER)is crucial for extracting structured information from text.While traditional methods rely on rules,Conditional Random Fields(CRFs),or deep learning,the advent of large-scale Pre-trained Language Models(PLMs)offers new possibilities.PLMs excel at contextual learning,potentially simplifying many natural language processing tasks.However,their application to NER remains underexplored.This paper investigates leveraging the GPT-3 PLM for NER without fine-tuning.We propose a novel scheme that utilizes carefully crafted templates and context examples selected based on semantic similarity.Our experimental results demonstrate the feasibility of this approach,suggesting a promising direction for harnessing PLMs in NER.展开更多
Entity Framework(简称EF)是微软推出LINQ to SQL后的新一代ORM技术。目前企业级应用软件开发均采用层次逻辑架构,重点讨论基于.NET的ORM技术变迁,分析EF框架的EDM三部分映射文件,并通过EDM工具的DataBase First方式生成实体类和映射文...Entity Framework(简称EF)是微软推出LINQ to SQL后的新一代ORM技术。目前企业级应用软件开发均采用层次逻辑架构,重点讨论基于.NET的ORM技术变迁,分析EF框架的EDM三部分映射文件,并通过EDM工具的DataBase First方式生成实体类和映射文件,完成数据访问及实例。展开更多
基金supported by the National Key R&D Program of China(2019YFB2103202).
文摘Nowadays,ensuring thequality of networkserviceshas become increasingly vital.Experts are turning toknowledge graph technology,with a significant emphasis on entity extraction in the identification of device configurations.This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms.Initially,an improved active learning approach is employed to select the most valuable unlabeled samples,which are subsequently submitted for expert labeling.This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set.Then the labeled samples are utilized to train the model for network configuration entity extraction.Furthermore,the multi-head self-attention of the transformer model is enhanced by introducing the Adaptive Weighting method based on the Laplace mixture distribution.This enhancement enables the transformer model to dynamically adapt its focus to words in various positions,displaying exceptional adaptability to abnormal data and further elevating the accuracy of the proposed model.Through comparisons with Random Sampling(RANDOM),Maximum Normalized Log-Probability(MNLP),Least Confidence(LC),Token Entrop(TE),and Entropy Query by Bagging(EQB),the proposed method,Entropy Query by Bagging and Maximum Influence Active Learning(EQBMIAL),achieves comparable performance with only 40% of the samples on both datasets,while other algorithms require 50% of the samples.Furthermore,the entity extraction algorithm with the Adaptive Weighted Multi-head Attention mechanism(AW-MHA)is compared with BILSTM-CRF,Mutil_Attention-Bilstm-Crf,Deep_Neural_Model_NER and BERT_Transformer,achieving precision rates of 75.98% and 98.32% on the two datasets,respectively.Statistical tests demonstrate the statistical significance and effectiveness of the proposed algorithms in this paper.
基金This research was supported by the National Key Research and Development Program[2020YFB1006302].
文摘Named entity recognition(NER)is a fundamental task of information extraction(IE),and it has attracted considerable research attention in recent years.The abundant annotated English NER datasets have significantly promoted the NER research in the English field.By contrast,much fewer efforts are made to the Chinese NER research,especially in the scientific domain,due to the scarcity of Chinese NER datasets.To alleviate this problem,we present aChinese scientificNER dataset–SciCN,which contains entity annotations of titles and abstracts derived from 3,500 scientific papers.We manually annotate a total of 62,059 entities,and these entities are classified into six types.Compared to English scientific NER datasets,SciCN has a larger scale and is more diverse,for it not only contains more paper abstracts but these abstracts are derived from more research fields.To investigate the properties of SciCN and provide baselines for future research,we adapt a number of previous state-of-theart Chinese NER models to evaluate SciCN.Experimental results show that SciCN is more challenging than other Chinese NER datasets.In addition,previous studies have proven the effectiveness of using lexicons to enhance Chinese NER models.Motivated by this fact,we provide a scientific domain-specific lexicon.Validation results demonstrate that our lexicon delivers better performance gains than lexicons of other domains.We hope that the SciCN dataset and the lexicon will enable us to benchmark the NER task regarding the Chinese scientific domain and make progress for future research.The dataset and lexicon are available at:https://github.com/yangjingla/SciCN.git.
基金supported by the Outstanding Youth Team Project of Central Universities(QNTD202308)the Ant Group through CCF-Ant Research Fund(CCF-AFSG 769498 RF20220214).
文摘Named Entity Recognition(NER)stands as a fundamental task within the field of biomedical text mining,aiming to extract specific types of entities such as genes,proteins,and diseases from complex biomedical texts and categorize them into predefined entity types.This process can provide basic support for the automatic construction of knowledge bases.In contrast to general texts,biomedical texts frequently contain numerous nested entities and local dependencies among these entities,presenting significant challenges to prevailing NER models.To address these issues,we propose a novel Chinese nested biomedical NER model based on RoBERTa and Global Pointer(RoBGP).Our model initially utilizes the RoBERTa-wwm-ext-large pretrained language model to dynamically generate word-level initial vectors.It then incorporates a Bidirectional Long Short-Term Memory network for capturing bidirectional semantic information,effectively addressing the issue of long-distance dependencies.Furthermore,the Global Pointer model is employed to comprehensively recognize all nested entities in the text.We conduct extensive experiments on the Chinese medical dataset CMeEE and the results demonstrate the superior performance of RoBGP over several baseline models.This research confirms the effectiveness of RoBGP in Chinese biomedical NER,providing reliable technical support for biomedical information extraction and knowledge base construction.
基金supported by Yunnan Provincial Major Science and Technology Special Plan Projects(Grant Nos.202202AD080003,202202AE090008,202202AD080004,202302AD080003)National Natural Science Foundation of China(Grant Nos.U21B2027,62266027,62266028,62266025)Yunnan Province Young and Middle-Aged Academic and Technical Leaders Reserve Talent Program(Grant No.202305AC160063).
文摘Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.
基金financially supported by the Natural Science Foundation of China(Grant No.42301492)the National Key R&D Program of China(Grant Nos.2022YFF0711600,2022YFF0801201,2022YFF0801200)+3 种基金the Major Special Project of Xinjiang(Grant No.2022A03009-3)the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources(Grant No.KF-2022-07014)the Opening Fund of the Key Laboratory of the Geological Survey and Evaluation of the Ministry of Education(Grant No.GLAB 2023ZR01)the Fundamental Research Funds for the Central Universities。
文摘As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information.
基金the Beijing Municipal Science and Technology Program(Z231100001323004)。
文摘With the help of pre-trained language models,the accuracy of the entity linking task has made great strides in recent years.However,most models with excellent performance require fine-tuning on a large amount of training data using large pre-trained language models,which is a hardware threshold to accomplish this task.Some researchers have achieved competitive results with less training data through ingenious methods,such as utilizing information provided by the named entity recognition model.This paper presents a novel semantic-enhancement-based entity linking approach,named semantically enhanced hardware-friendly entity linking(SHEL),which is designed to be hardware friendly and efficient while maintaining good performance.Specifically,SHEL's semantic enhancement approach consists of three aspects:(1)semantic compression of entity descriptions using a text summarization model;(2)maximizing the capture of mention contexts using asymmetric heuristics;(3)calculating a fixed size mention representation through pooling operations.These series of semantic enhancement methods effectively improve the model's ability to capture semantic information while taking into account the hardware constraints,and significantly improve the model's convergence speed by more than 50%compared with the strong baseline model proposed in this paper.In terms of performance,SHEL is comparable to the previous method,with superior performance on six well-established datasets,even though SHEL is trained using a smaller pre-trained language model as the encoder.
文摘Named Entity Recognition(NER)is crucial for extracting structured information from text.While traditional methods rely on rules,Conditional Random Fields(CRFs),or deep learning,the advent of large-scale Pre-trained Language Models(PLMs)offers new possibilities.PLMs excel at contextual learning,potentially simplifying many natural language processing tasks.However,their application to NER remains underexplored.This paper investigates leveraging the GPT-3 PLM for NER without fine-tuning.We propose a novel scheme that utilizes carefully crafted templates and context examples selected based on semantic similarity.Our experimental results demonstrate the feasibility of this approach,suggesting a promising direction for harnessing PLMs in NER.
文摘Entity Framework(简称EF)是微软推出LINQ to SQL后的新一代ORM技术。目前企业级应用软件开发均采用层次逻辑架构,重点讨论基于.NET的ORM技术变迁,分析EF框架的EDM三部分映射文件,并通过EDM工具的DataBase First方式生成实体类和映射文件,完成数据访问及实例。