期刊文献+
共找到214篇文章
< 1 2 11 >
每页显示 20 50 100
Review on the Impact of Climate Change on Great Lakes Region’s Agriculture and Water Resources
1
作者 Zeyu Shen 《Journal of Geoscience and Environment Protection》 2024年第7期165-176,共12页
This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technol... This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change. 展开更多
关键词 Climate Change Midwest USA Agricultural Impacts Urban Runoff Sustainable Practices Precipitation Patterns Temperature Increase Greenhouse Gas Emissions Soil Erosion water Management
下载PDF
Performance of a Horizontal Flow Constructed Reed Bed Filter for Municipal Wastewater Treatment: The Case Study of the Prototype Installed at Gaston Berger University, Saint-Louis, Senegal
2
作者 Abdou Khafor Ndiaye Falilou Coundoul +2 位作者 Abdoulaye Deme Antonina Torrens Armengol Abdoulaye Senghor 《Natural Resources》 2024年第1期1-16,共16页
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed... In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability. 展开更多
关键词 Constructed Wetlands Horizontal Flow Reed Beds Wastewater Treatment Phragmites and Typha Plants Physicochemical Pollutant Removal Microbiological Indicators Fecal Coliforms and Helminth Eggs water Quality Improvement Senegal water Reuse Standards Sustainable water Management Agricultural Irrigation Reuse Nutrient Removal Efficiency Environmental Engineering Ecological Sanitation Systems
下载PDF
Operation Effect of Water Control System for Beddings of Pig-raising Deep-litter Systems 被引量:6
3
作者 林家彬 李辉 +4 位作者 汤赤 秦竹 周忠凯 刘建龙 余刚 《Agricultural Science & Technology》 CAS 2016年第4期923-926,946,共5页
[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental t... [Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental temperature, stopping time of aeration, aeration time and aeration rate by 9 groups of experiments, so as to improve the water removal efficiency of adopted mixed and reduce operation energy consumption. [Result] The average water contents in the mixed bedding under 3 temperatures decreased by 4.58% ±2.91%, 13.17% ±3.77% and 10.8% ±7.72%, respectively; the highest water removal efficiency could be achieved under an experimental temperature at 45 ℃, stopping time of aeration of 15 min, aeration time of 7 min, and an aeration rate at 4 m^3/min, which formed the optimal factor combination mode of the operation parameter of the water control equipment; the effects of various experimental factors on water content in the bedding were in order of aeration ratetemperatureaeration timestopping time of aeration; and the effects of various experimental factors on water removal efficiency in the bedding were in order of temperatureaeration rateaeration timestopping time of aeration. [Conclusion] After the optimization of operation parameters of the water control equipment for the deep-litter bedding, water removal efficiency of the mixed bedding could be improved, and the operation energy consumption of the equipment could be reduced. 展开更多
关键词 Deep-litter bedding Pig raising water management water content water removal efficiency
下载PDF
A system dynamics approach for water resources policy analysis in arid land:a model for Manas River Basin 被引量:14
4
作者 ShanShan DAI LanHai LI +2 位作者 HongGang XU XiangLiang PAN XueMei LI 《Journal of Arid Land》 SCIE CSCD 2013年第1期118-131,共14页
The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to m... The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin. 展开更多
关键词 water resources management sustainable development system dynamics modeling water stress arid river basin
下载PDF
Valuing water quality in China:purpose,approach and policy 被引量:12
5
作者 Timothy Swanson,Brett Day,Susana Mourato Centre for Social and Economic Research on the Global Environment, Department of Economics, and School of Public Policy, University College London, Gower Street, London WC1E 6BT, United Kingdom 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1999年第3期309-315,共7页
The economic valuation of water quality in a rapidly developing country such as China should be undertaken to determine when the benefits from rapid growth begin to exceed the costs from the same. The best approach is... The economic valuation of water quality in a rapidly developing country such as China should be undertaken to determine when the benefits from rapid growth begin to exceed the costs from the same. The best approach is to ascertain the total economic valuation of the environmental resource. This includes all of the various uses of the resource, and even those values that are unconnected to individual use (e.g. natural and aesthetic values). A method known as contingent valuation (CV) is used to ascertain these forms of value. This approach is demonstrated here in an application to river water quality in the Beijing area. A CV study is reported in which Beijing area citizens reported an average willingness to pay about 1.3% of annual income in order to prevent further deterioration of river water quality. Aggregation over the representative population indicates that the perceived cost of further river quality deterioration is in the neighbourhood of USD 60 million. Such a measure provides some indication of the socially desired “stopping point”—— in the pursuit of economic growth at the expense of environmental quality. 展开更多
关键词 water management policy environmental valuation ENVIRONMENT development.
下载PDF
An approach to delineate groundwater recharge potential sites in Ambalantota,Sri Lanka using GIS techniques 被引量:5
6
作者 i.p.senanayake d.m.d.o.k.dissanayake +1 位作者 b.b.mayadunna w.l.weerasekera 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期115-124,共10页
The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress c... The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress conditions due to seasonal precipitation patterns and scarcity of surface water resources.Therefore, management of available groundwater resources is critical, to fulfil potable water requirements in the area. However, exploitation of groundwater should be carried out together with artificial recharging in order to maintain the long term sustainability of water resources. In this study, a GIS approach was used to delineate potential artificial recharge sites in Ambalantota area within Hambantota. Influential thematic layers such as rainfall, lineament, slope, drainage, land use/land cover, lithology, geomorphology and soil characteristics were integrated by using a weighted linear combination method. Results of the study reveal high to moderate groundwater recharge potential in approximately 49% of Ambalantota area. 展开更多
关键词 GIS Groundwater recharge water management Weighted overlay Sri Lanka
下载PDF
Natural water purification and water management by artificial groundwater recharge 被引量:6
7
作者 Klaus-Dieter BALKE 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第3期221-226,共6页
Worldwide,several regions suffer from water scarcity and contamination.The infiltration and subsurface storage of rain and river water can reduce water stress.Artificial groundwater recharge,possibly combined with ban... Worldwide,several regions suffer from water scarcity and contamination.The infiltration and subsurface storage of rain and river water can reduce water stress.Artificial groundwater recharge,possibly combined with bank filtration,plant purification and/or the use of subsurface dams and artificial aquifers,is especially advantageous in areas where layers of gravel and sand exist below the earth's surface.Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages.The contamination of infiltrated river water will be reduced by natural attenuation.Clay minerals,iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities.By this,a final water treatment,if necessary,becomes much easier and cheaper.The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes.Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need.This method enables a continuous water supply over the whole year.Generally,artificially recharged groundwater is better protected against pollution than surface water,and the delimitation of water protection zones makes it even more save. 展开更多
关键词 Artificial groundwater recharge Natural attenuation water management
下载PDF
Interactions of Water Management and Nitrogen Fertilizer on Nitrogen Absorption and Utilization in Rice 被引量:4
8
作者 WANG Shao-hua, CAO Wei-xing, DING Yan-feng, TIAN Yong-chao and JIANG Dong (Key Laboratory of Crop Growth Regulation, Ministry of Agriculture / Nanjing Agricultural University, Nanjing 210095, P.R.China) 《Agricultural Sciences in China》 CAS CSCD 2003年第10期1091-1096,共6页
The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw... The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw increased and the percentage of nitrogen translocation (PNT) from vegetative organs, nitrogen dry matter production efficiency (NDMPE) and nitrogen grain production efficiency (NGPE) decreased with nitrogen increasing. The nitrogen uptake and NGPE decreased when severe water stressed. However, rice not only decreased the nitrogen uptake but also increased the PNT from vegetative organs, NDMPE and NGPE when mild water stressed. There were obvious interactions between nitrogen fertilizer and water management, such as with water stress increasing the effect of nitrogen on increasing nitrogen uptake was reduced and that on decreasing NDMPE was intensified. 展开更多
关键词 RICE Soil water management Application Nitrogen fertilizer INTERACTION
下载PDF
Research progress of socio-economic water cycle in China 被引量:6
9
作者 JIA Shao-feng, WANG Guo, ZHANG Shi-feng, YU Gui-rui, WANG Jin-xia, XIA Jun (Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101,China) 《Journal of Geographical Sciences》 SCIE CSCD 2002年第1期114-120,共7页
China has made great progress in the study of socio-economic water cycle. She has completed national water resources appraisement and medium to long-term water supply planning. She has been engaging in study on water-... China has made great progress in the study of socio-economic water cycle. She has completed national water resources appraisement and medium to long-term water supply planning. She has been engaging in study on water-deficient regions in North China and Northwest China for about half a century. For solving water shortage problem in northern China, she has put forward the famous South-to-North Water Transferring Projects, which has been set as one of the four biggest national projects in the Tenth Five-Year-Plan period although there are still debates. For promoting water use efficiency, China has been reforming her water management system, including water right system and water price system. There has already been a case of water right purchase. China has also done a lot of research on the interaction between human activity, water and ecosystem. For meeting the need of sustainability and coordinating water resources development and environmental protection, the study of ecological water requirement became very hot in recent years. There are three focuses of socio-economic water cycle study now in China: water transfer projects from the south to the north, water resources management and ecological water requirement. 展开更多
关键词 water cycle socio-economic water cycle sustainable water resources management water security
下载PDF
Spatial matching and flow in supply and demand of water provision services: A case study in Xiangjiang River Basin 被引量:4
10
作者 DENG Chu-xiong ZHU Da-mei +1 位作者 LIU Yao-jun LI Zhong-wu 《Journal of Mountain Science》 SCIE CSCD 2022年第1期228-240,共13页
Global climate change and increased human consumption have aggravated the uneven spatiotemporal distribution of watershed water resources, affecting the water provision supply and demand state. However, this problem h... Global climate change and increased human consumption have aggravated the uneven spatiotemporal distribution of watershed water resources, affecting the water provision supply and demand state. However, this problem has often been ignored. The present study used the Xiangjiang River basin(XRB) as the study area, and the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST) model, demand quantification model,supply–demand ratio, and water flow formula were applied to explore the spatial heterogeneity, flow, and equilibrium between water supply and demand. The results demonstrated significant spatial heterogeneity in the upstream, midstream, and downstream regions.The areas of water shortage were mainly located the downstream of the Changsha–Zhuzhou–Xiangtan urban agglomeration, and the Hengyang basin was the most scarcity area. Affected by terrain gradients and human needs, water flow varied from-16.33 × 10^(8) m^(3) to 13.69 × 10^(8) m^(3)from the upstream to the downstream area, which provided a possibility to reduce spatial heterogeneity. In the future, measures such as strengthening water resource system control,sponge city construction, and dynamic monitoring technology should be taken to balance the supply and demand of water in different river sections of the basin. This study can provide references for regulating water resources allocation in different reaches of the basin. 展开更多
关键词 water provision services Supply and demand Spatiotemporal dislocation water flow water management and saving policy Xiangjiang River basin
下载PDF
Application of WEAP Simulation Model to Hengshui City Water Planning 被引量:3
11
作者 OJEKUNLE Z O 赵林 +2 位作者 李满洲 杨真 谭欣 《Transactions of Tianjin University》 EI CAS 2007年第2期142-146,共5页
Like many river basins in China, water resources in the Fudong Pai River are almost fully allocated. This paper seeks to assess and evaluate water resource problems using water evaluation and planning (WEAP) model via... Like many river basins in China, water resources in the Fudong Pai River are almost fully allocated. This paper seeks to assess and evaluate water resource problems using water evaluation and planning (WEAP) model via its application to Hengshui Basin of Fudong Pai River. This model allows the simulation and analysis of various water allocation scenarios and, above all, scenarios of users' behavior. Water demand management is one of the options discussed in detail. Simulations are proposed for diverse climatic situations from dry years to normal years and results are discussed. Within the limits of data availability, it appears that most water users are not able to meet all their requirements from the river, and that even the ecological reserve will not be fully met during certain years. But the adoption of water demand management procedures offers opportunities for remedying this situation during normal hydrological years. However, it appears that demand management alone will not suffice during dry years. Nevertheless, the ease of use of the model and its user-friendly interfaces make it particularly useful for discussions and dialogue on water resources management among stakeholders. 展开更多
关键词 water allocation WEAP model water demand management river basin management water resources management water demand coverage unmet water demand Fudong Pai River
下载PDF
A simulation-based two-stage interval-stochastic programming model for water resources management in Kaidu-Konqi watershed,China 被引量:6
12
作者 Yue HUANG Xi CHEN +2 位作者 YongPing LI AnMing BAO YongGang MA 《Journal of Arid Land》 SCIE 2012年第4期390-398,共9页
This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a dis... This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty. 展开更多
关键词 OPTIMIZATION two-stage stochastic programming UNCERTAINTY water resources management hydrological model Kaidu-Konqi watershed Tarim River Basin
下载PDF
Comparison of water resources management between China and the United States 被引量:9
13
作者 Chansheng He Carol P.Harden Yanxu Liu 《Geography and Sustainability》 2020年第2期98-108,共11页
As the world’s top two economies,the United States(U.S.)and China face a number of similar water resources problems.Yet,few studies have been done to systematically compare policies and approaches on water resources ... As the world’s top two economies,the United States(U.S.)and China face a number of similar water resources problems.Yet,few studies have been done to systematically compare policies and approaches on water resources management between China and the U.S.This study compares water resources policies of China and the U.S.in the areas of national authority,water supply,water quality,and ecosystem use of the water to draw lessons learned and shed light on water resources management in China,the U.S.,and the rest of the world.The lessons learned from the comparison include six aspects.1)New paradigms of people-water harmony and a water-saving society are urgently needed to address the pressing water crisis and achieve the United Nations Sustainable Development Goals(UN SDGs).2)A comprehensive,consistent,forward-looking national policy is necessary to achieve sustainable use of water resources.3)Empowerment of river basin commissions with comprehensive authority over the integrative management of air,land,water,and biological resources in the river basin could significantly enhance the benefits and effectiveness of economic development and environmental protection.4)Expansion of water exchange through market mechanisms among water users promotes efficient and beneficial water uses.5)Use of water for ecosystem services should be an integral part of water resources management.China has set up a national blueprint for achieving ecological civilization;maintaining appropriate amounts of flow in rivers and lakes for maintenance of wildlife and fisheries and ecosystems should be institutionalized as part of this national strategy as well.6)By sharing their rich experiences and lessons in water resources management,economic development,and ecological protection with other countries,China and the U.S.can help the world to achieve global human-water harmony and the UN SDGs. 展开更多
关键词 water resources management Comparative analysis China The United States
下载PDF
Effects of Land Management Practices on Soil Water in Southwestern Mountainous Area, China 被引量:3
14
作者 SHAO Jing-an WEI Chao-fu XIE De-ti 《Agricultural Sciences in China》 CAS CSCD 2008年第7期871-886,共16页
The effects of selected land management practices (cross-sloping tillage, ridge culture, organic manure, and straw mulch) on soil water conservation in a southwestern mountainous area, China, were studied during Nov... The effects of selected land management practices (cross-sloping tillage, ridge culture, organic manure, and straw mulch) on soil water conservation in a southwestern mountainous area, China, were studied during November 2002 to November 2004. The experimental field is divided into three parts based on soil layer depths, 0-60 cm (part Ⅰ), 0-40 cm (part Ⅱ), and 0- 20 cm (part Ⅲ), and they all had the same slope azimuth (SE), slope (10°), and slope type (linear). The experimental plots were subjected to the following treatments: cross-sloping tillage (CST); cross-sloping tillage with organic manure (CST/ OM); cross-sloping tillage with straw mulch (CST/SM); contour ridge culture (CRC); contour ridge culture with organic manure (CRC/OM); and contour ridge culture with straw mulch (CRC/SM), to identify the effects of management practices on soil water. Water contents were determined for soil samples collected, using a 2.2 cm diameter manual probe. Soil water was monitored once every five days from Nov. 20, 2002 to Nov. 20, 2004. The results indicated that, in the study stages, an integration of rainfall, evaporative losses, and crop transcription controlled the basic tendencies of profile (mean) soil water, while land management practices, to a certain extent, only modified its amount, distribution, and routing. Moreover, these modifications also mainly focused on the first 20 cm depth of topsoil layer. When each management practice was compared with control treatment, season changes of profile (mean) soil water were pronounced, while interannual changes among them were not significant. More comparisons indicated that, in the study stages, contour ridge culture had better effects than cross-sloping tillage. And under the same tillage, the combination of organic manure could achieve more than straw mulch. These management practices should be recommended considering the effectiveness of soil and water management techniques in the southwestern mountainous area, China. 展开更多
关键词 land management practices soil water precision water management southwestern mountainous area China
下载PDF
SWOT Analysis and Challenges of Nile Basin Initiative:An Integrated Water Resource Management Perspective 被引量:3
15
作者 Alebel Abebe Belay Henry Musoke Semakula +1 位作者 George James Wambura Labohy Jan 《Chinese Journal of Population,Resources and Environment》 2010年第1期8-17,共10页
River Nile is one of the longest transboundery rivers and it is shared and used by Burundi,Democratic Republic of Congo,Egypt,Ethiopia,Eritrea,Kenya,Rwanda,Sudan,Tanzania and Uganda.As of today,the Nile is a crucial r... River Nile is one of the longest transboundery rivers and it is shared and used by Burundi,Democratic Republic of Congo,Egypt,Ethiopia,Eritrea,Kenya,Rwanda,Sudan,Tanzania and Uganda.As of today,the Nile is a crucial resource for the economic development of the Nile Basin countries and a vital source of livelihood for 160 million inhabitants as well as 300 million people living in the 10 riparian countries.The Nile Basin Initiative(NBI) is one of the international cooperative river basin management program and regional partnership where all the Nile Basin countries except Eritrea unite to pursue long-term sustainable development,improved land use practices and management.This review therefore focused on the challenges not faced on NBI in terms of integrated use of the river and conducted analysis of strengths,weaknesses,opportunities and threats(SWOT) based on secondary data.The result of the review revealed that for decades,the Nile Basin people have been facing many complex environmental,social,economic and political challenges that have made it difficult for the proper management and sustainability of Nile water.The initiative provides training to develop skills in government ministries,non-governmental organizations and local communities in each country.It is also working to raise awareness of critical environmental issues by strengthening networks of environmental education practitioners;developing curriculum in the education sector.The challenges of NBI include the involvement and funding of World Bank,lack of sufficient staff,procedural and policies conflicts,lack of coordination and linkage with other regional institutions and lack of recognition as river basin organization.Considering the complex nature of the project,it is recommended that the NBI should come up with a strong multi-disciplinary monitoring and evaluation team to follow up all implemented projects.The NBI should carry out participatory land use planning in communities along the river basin.Moreover,livelihood analysis should be carried out especially in communities along the Nile to come up with poverty eradication projects which are socially acceptable,applicable,economically viable and affordable. 展开更多
关键词 river basin management Nile Basin Initiative SWOT analysis integrated water management River Nile
下载PDF
Assessment of Fish Farming Practices, Operations, Water Resource Management and Profitability in Katsina State, Nigeria 被引量:3
16
作者 Akeem Babatunde Dauda Hassan Ishaq Ibrahim +1 位作者 Armayau Hamisu Bichi Adenike Susan Tola-Fabunmi 《Journal of Northeast Agricultural University(English Edition)》 CAS 2017年第4期89-96,共8页
This study assessed the fish production, culture facilities, operations, water resource management and profitability of fish farming in Katsina State, Nigeria, with a view of understanding the status of aquaculture de... This study assessed the fish production, culture facilities, operations, water resource management and profitability of fish farming in Katsina State, Nigeria, with a view of understanding the status of aquaculture development in Katsina State. Data were collected using structured questionnaire administered to 35 out of the active 42 farms in Katsina State at the period and the data obtained were analyzed using descriptive statistics and linear regression. Among the respondents, 37.1% used concrete tank alone and another 37.2% used concrete tank with other types of culture facilities, 57.1% practised mono-culture techniques and 77.1% used stagnant renewal system as culture system. Management of water quality was done by majority(82.9%) with mere visual evaluation, while 68.6% did not use any forms of water treatment. Most of the farms(80%) depended on imported feed for feeding their fish and gross profits of ■7.29±1.81 and ■157.83±118.08 were obtained on fingerlings and adult fish, respectively. The tested explanatory variables were responsible for 45.4% change in profitability and profitability was found to be dependent on feeding cost(t=–3.38 and p=0.002) and size of fish at harvest(t=2.70 and p=0.011). The research findings established that fish farming in Katsina State was under developed. 展开更多
关键词 aquaculture development culture system fish feed HARVESTING water quality management
下载PDF
Application of a water quality model for determining instream aeration station location and operational rules:A case study 被引量:3
17
作者 Charles S.Melching 《Water Science and Engineering》 EI CAS CSCD 2018年第1期8-16,共9页
Instream aeration has been used as a supplement to secondary treatment or a substitute for tertiary treatment for meeting dissolved oxygen (DO) standards in rivers. Many studies have used water quality models to det... Instream aeration has been used as a supplement to secondary treatment or a substitute for tertiary treatment for meeting dissolved oxygen (DO) standards in rivers. Many studies have used water quality models to determine the number, location, and capacity of instream aeration stations (IASs) needed to meet DO standards in combination with other pollution control measures. DO concentrations have been improved in the North Shore Channel and North Branch Chicago River by the Devon Avenue IAS for more than 35 years. A study was initiated to determine whether it was better to rehabilitate or relocate this station and to determine appropriate operational guidance for the IAS at the selected location. A water quality model capable of simulating DO concentrations during unsteady flow was used to evaluate the proper location for an IAS and operational guidance for this IAS. Three test years, a dry year, a wet year, and an extreme year, were considered in the evaluation. The study found that the Devon Avenue IAS should be rehabilitated as this location performed as well as or better than any of 10 alternative locations. According to the new operational guidance for this IAS, the amount of time with blowers operating could be substantially reduced compared to traditional operations while at the same time the attainment of the DO standards could be increased. This study shows that a carefully designed modeling study is key to effective selection, location, and operation of IASs such that attainment of DO standards can be maximized while operation hours of blowers can be minimized. 展开更多
关键词 Instream aeration Dissolved oxygen water quality modeling water quality management Computer simulation
下载PDF
Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management 被引量:2
18
作者 Yingjie Zhou Wenhui Zhang +2 位作者 Shengwei Yu Haibo Jiang Chunzhong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期246-252,共7页
Mass transport is crucial to the performance of proton exchange membrane fuel cells,especially at high current densities.Generally,the oxygen and the generated water share same transmission medium but move towards opp... Mass transport is crucial to the performance of proton exchange membrane fuel cells,especially at high current densities.Generally,the oxygen and the generated water share same transmission medium but move towards opposite direction,which leads to serious mass transfer problems.Herein,a series of patterned catalyst layer were prepared with a simple one-step impressing method using nylon sieves as templates.With grooves 100μm in width and 8μm in depth on the surface of cathode catalyst layer,the maximum power density of fuel cell increases by 10%without any additional durability loss while maintaining a similar electrochemical surface area.The concentration contours calculated by finite element analysis reveal that the grooves built on the surface of catalyst layer serve to accumulate the water nearby while oxygen tends to transfer through relatively convex region,which results from capillary pressure difference caused by the pore structure difference between the two regions.The separation of oxidant gas and generated water avoids mass confliction thus boosts mass transport efficiency. 展开更多
关键词 water management Mass transfer Patterned catalyst layer Proton exchange membrane fuel cells Finite element analysis
下载PDF
Water Management for Improvement of Rice Yield,Appearance Quality and Palatability with High Temperature During Ripening Period 被引量:2
19
作者 Yuji Matsue Katsuya Takasaki Jun Abe 《Rice science》 SCIE CSCD 2021年第4期409-416,I0038,共9页
To clarify the optimal water management in large-scale fields under high temperatures at the ripening period,effective water managements during this period for improvement of yield,appearance quality and palatability ... To clarify the optimal water management in large-scale fields under high temperatures at the ripening period,effective water managements during this period for improvement of yield,appearance quality and palatability were investigated.Compared with intermittent irrigation and flooded irrigation,the soil temperature with saturated irrigation remained low throughout the day,and the decrease rate of the bleeding rate of hills was the lowest.These results suggested that the saturated irrigation maintained root activity.For the three irrigation types,the number of spikelets per m2 and 1000-grain weight were similar,however,saturated irrigation resulted in significantly higher rice yield due to improvement in the percentage of ripened grains.The saturated irrigation produced a high percentage of perfect rice grains and thicker brown rice grain,furthermore,the palatability of cooked rice was excellent because protein content and hardness/adhesion ratio were both low.Thus,under high-temperature ripening conditions,soil temperature was lowered and root activity was maintained when applying saturated irrigation after heading time.The results indicated that saturated irrigation is an effective countermeasure against high-temperature ripening damage. 展开更多
关键词 appearance quality root activity high-temperature ripening damage PALATABILITY saturated irrigation soil temperature water management rice yield intermittent irrigation flooded irrigation
下载PDF
Relationships Between River Water Quality and Landscape Factors in Haihe River Basin, China: Implications for Environmental Management 被引量:4
20
作者 XU Huashan ZHENG Hua +2 位作者 CHEN Xiaoshu REN Yufen OUYANG Zhiyun 《Chinese Geographical Science》 SCIE CSCD 2016年第2期197-207,共11页
River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help... River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin. 展开更多
关键词 land use watershed management river water quality gradient analysis
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部