In the course of the basic research on the ammonia-evaporation reaction of manganese monoxide (MnO), hydroxyl manganese chloride (Mn2(OH)3Cl) was found. The solubility and phase diagrams of the hydroxyl manganes...In the course of the basic research on the ammonia-evaporation reaction of manganese monoxide (MnO), hydroxyl manganese chloride (Mn2(OH)3Cl) was found. The solubility and phase diagrams of the hydroxyl manganese chloride were investigated. The aqueous thermostat and vibrating bed were used to determine the solubility of hydroxyl manganese chloride in water, ammonium chloride and manganese chloride system, and the phase diagrams of multicomponent system were drawn. The research results indicate that hydroxyl manganese chloride has been produced in laboratory and is in favor of the solid-liquid separation at high temperature.展开更多
A new process is developed by using compound Mn as intermediate to produce Cl2from HCl,with the following steps.(1)HCl steam is decomposed by intermediate Mn2O3to produce Cl2and Mn Cl2at 500°C.(2)Produced Mn Cl2i...A new process is developed by using compound Mn as intermediate to produce Cl2from HCl,with the following steps.(1)HCl steam is decomposed by intermediate Mn2O3to produce Cl2and Mn Cl2at 500°C.(2)Produced Mn Cl2is oxidized by water steam to produce Mn O at 450°C.(3)The Mn O compound is oxidized by air to yield Mn2O3.The X-ray diffraction(XRD)crystallite characterization results indicate the high conversion in each step under the optimum experimental conditions.Long term experiments for continuous conversion of HCl to Cl2by using Mn2O3as intermediate in a fixed bed reactor indicate that over 90%of HCl could be converted to Cl2on stream of 30 h.The production of Cl2from HCl with Mn compound as an intermediate and atmospheric steam is a feasible and recyclable process.展开更多
Objective To investigate the role of autophagy in MnC l2-induced apoptosis in human bronchial epithelial 16 HBE cells.Methods Cell proliferation was measured by MTT assay.Mitochondrial membrane potential(MMP) and ap...Objective To investigate the role of autophagy in MnC l2-induced apoptosis in human bronchial epithelial 16 HBE cells.Methods Cell proliferation was measured by MTT assay.Mitochondrial membrane potential(MMP) and apoptosis were measured by flow cytometry.Autophagic vacuoles were detected by fluorescence microscopy.Cellular levels of apoptosis and autophagy-related proteins were measured by western blotting.Results 16 HBE cell proliferation was inhibited by Mn Cl2 in a dose-and time-dependent manner.Mn Cl2-induced 16 HBE cell growth inhibition was related to MMP depolarization prior to the induction of apoptosis.Our data revealed that Mn Cl2-induced apoptosis in 16 HBE cells was mediated by decreased expression of Bcl-2 and increased levels of cleaved caspase-3.It was observed that when we exposed 16 HBE cells to MnCl2 in a dose-dependent manner,the formation of autophagic vacuoles and the levels of LC-3B-II were elevated.RNA interference of LC3 B in these Mn Cl2-exposed cells demonstrated that MMP loss and apoptosis were enhanced.Additionally,the pan-caspase inhibitor Z-VAD-FMK increased the cellular levels of Bcl-2 and decreased apoptosis,but did not affect the cellular levels of LC3 B in Mn Cl2-treated 16 HBE cells.Conclusion Mn Cl2 dose-and time-dependently inhibits 16 HBE cell proliferation and induces MMP loss and apoptosis.Autophagy acts in a protective role against Mn Cl2-induced apoptosis in 16 HBE cells.展开更多
The low cell voltage during electrolytic Mn from the MnCl_(2) system can effectively reduce the power consumption.In this work,the Ti/Sn−Ru−Co−Zr modified anodes were obtained by using thermal decomposition oxidation....The low cell voltage during electrolytic Mn from the MnCl_(2) system can effectively reduce the power consumption.In this work,the Ti/Sn−Ru−Co−Zr modified anodes were obtained by using thermal decomposition oxidation.The physical parameters of coatings were observed by SEM(scanning electron microscope).Based on the electrochemical performance and SEM/XRD(X-ray diffraction)of the coatings,the influence of Zr on electrode performance was studied and analyzed.When the mole ratio of Sn−Ru−Co−Zr is 6:1:0.8:0.3,the cracks on the surface of coatings were the smallest,and the compactness was the best due to the excellent filling effect of ZrO_(2)nanoparticles.Moreover,the electrode prepared under this condition had the lowest mass transfer resistance and high chloride evolution activity in the 1mol%NH_(4)Cl and 1.5mol%HCl system.The service life of 3102 h was achieved according to the empirical formula of accelerated-life-test of the new type anode.展开更多
Primary and secondary benzylic alcohols were oxidized to the corresponding carbonyl compounds in good to high yields by environmentally friendly and green oxidant, H2O2 catalyzed by Montmorillonite-K10 supported manga...Primary and secondary benzylic alcohols were oxidized to the corresponding carbonyl compounds in good to high yields by environmentally friendly and green oxidant, H2O2 catalyzed by Montmorillonite-K10 supported manganese(H) chloride.展开更多
基金Project (062702) supported by Innovation Funds of Institute of Process Engineering,Chinese Academy of Sciences
文摘In the course of the basic research on the ammonia-evaporation reaction of manganese monoxide (MnO), hydroxyl manganese chloride (Mn2(OH)3Cl) was found. The solubility and phase diagrams of the hydroxyl manganese chloride were investigated. The aqueous thermostat and vibrating bed were used to determine the solubility of hydroxyl manganese chloride in water, ammonium chloride and manganese chloride system, and the phase diagrams of multicomponent system were drawn. The research results indicate that hydroxyl manganese chloride has been produced in laboratory and is in favor of the solid-liquid separation at high temperature.
基金Supported by the National High Technology Research and Development Program of China(2011AA060703)the Innovation Funds of institute of processes engineering of Chinese Academy of Sciences(062702)
文摘A new process is developed by using compound Mn as intermediate to produce Cl2from HCl,with the following steps.(1)HCl steam is decomposed by intermediate Mn2O3to produce Cl2and Mn Cl2at 500°C.(2)Produced Mn Cl2is oxidized by water steam to produce Mn O at 450°C.(3)The Mn O compound is oxidized by air to yield Mn2O3.The X-ray diffraction(XRD)crystallite characterization results indicate the high conversion in each step under the optimum experimental conditions.Long term experiments for continuous conversion of HCl to Cl2by using Mn2O3as intermediate in a fixed bed reactor indicate that over 90%of HCl could be converted to Cl2on stream of 30 h.The production of Cl2from HCl with Mn compound as an intermediate and atmospheric steam is a feasible and recyclable process.
基金supported by National Natural Science Foundation of China(Nos.81370079 and 81001253)Beijing Natural Science Foundation(No.7132122)
文摘Objective To investigate the role of autophagy in MnC l2-induced apoptosis in human bronchial epithelial 16 HBE cells.Methods Cell proliferation was measured by MTT assay.Mitochondrial membrane potential(MMP) and apoptosis were measured by flow cytometry.Autophagic vacuoles were detected by fluorescence microscopy.Cellular levels of apoptosis and autophagy-related proteins were measured by western blotting.Results 16 HBE cell proliferation was inhibited by Mn Cl2 in a dose-and time-dependent manner.Mn Cl2-induced 16 HBE cell growth inhibition was related to MMP depolarization prior to the induction of apoptosis.Our data revealed that Mn Cl2-induced apoptosis in 16 HBE cells was mediated by decreased expression of Bcl-2 and increased levels of cleaved caspase-3.It was observed that when we exposed 16 HBE cells to MnCl2 in a dose-dependent manner,the formation of autophagic vacuoles and the levels of LC-3B-II were elevated.RNA interference of LC3 B in these Mn Cl2-exposed cells demonstrated that MMP loss and apoptosis were enhanced.Additionally,the pan-caspase inhibitor Z-VAD-FMK increased the cellular levels of Bcl-2 and decreased apoptosis,but did not affect the cellular levels of LC3 B in Mn Cl2-treated 16 HBE cells.Conclusion Mn Cl2 dose-and time-dependently inhibits 16 HBE cell proliferation and induces MMP loss and apoptosis.Autophagy acts in a protective role against Mn Cl2-induced apoptosis in 16 HBE cells.
基金financially supported by the National Natural Science Foundation of China (Nos. 51564029, 51504111, 52064028, and 22002054)the China Postdoctoral Science Foundation (No. 2018M633418)+1 种基金the Technology Innovation Talents Project of Yunnan Province (No. 2019HB111)Analysis and Testing Foundation of Kunming University of Science and Technology (Nos. 2019 M20182202013, 2020M20192202035, and 2020M2019 2202099)
文摘The low cell voltage during electrolytic Mn from the MnCl_(2) system can effectively reduce the power consumption.In this work,the Ti/Sn−Ru−Co−Zr modified anodes were obtained by using thermal decomposition oxidation.The physical parameters of coatings were observed by SEM(scanning electron microscope).Based on the electrochemical performance and SEM/XRD(X-ray diffraction)of the coatings,the influence of Zr on electrode performance was studied and analyzed.When the mole ratio of Sn−Ru−Co−Zr is 6:1:0.8:0.3,the cracks on the surface of coatings were the smallest,and the compactness was the best due to the excellent filling effect of ZrO_(2)nanoparticles.Moreover,the electrode prepared under this condition had the lowest mass transfer resistance and high chloride evolution activity in the 1mol%NH_(4)Cl and 1.5mol%HCl system.The service life of 3102 h was achieved according to the empirical formula of accelerated-life-test of the new type anode.
基金financially supported by the Islamic Azad University,Qom Branch
文摘Primary and secondary benzylic alcohols were oxidized to the corresponding carbonyl compounds in good to high yields by environmentally friendly and green oxidant, H2O2 catalyzed by Montmorillonite-K10 supported manganese(H) chloride.