The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element...The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element method(FEM). Some compatible elements can be developed by the means of supplementing correction functions, increasing nodes in element or on the boundaries, expanding nodal degrees of freedom(DOF), etc, but these elements are inconvenient to apply in practice for the high calculation complexity. In this paper, in order to overcome the defects of thin plate bending finite element, numerical manifold method(NMM) was introduced to solve thin plate bending deformation problem. Rectangular mesh was adopted as mathematical mesh to form f'mite element cover system, and then 16-cover manifold element was proposed. Numerical manifold formulas were constructed on the basis of minimum potential energy principle, displacement boundary conditions are implemented by penalty function method, and all the element matrixes were derived in details. The 16-cover element has a simple calculation process for employing only the transverse displacement cover DOFs as the basic unknown variables, and has been proved to meet the requirements of completeness and full compatibility. As an application, the presented 16-cover element has been used to analyze bending deformation of square thin plate under different loads and boundary conditions, and the results show that numerical manifold method with compatible element, compared with finite element method, can improve computational accuracy and convergence greatly.展开更多
A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consis...A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50775044, Grant No. 50975050)Guangdong Provincial and Ministry of Education Industry-University-Research Integration Project of China (Grant No. 2009B090300044)
文摘The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element method(FEM). Some compatible elements can be developed by the means of supplementing correction functions, increasing nodes in element or on the boundaries, expanding nodal degrees of freedom(DOF), etc, but these elements are inconvenient to apply in practice for the high calculation complexity. In this paper, in order to overcome the defects of thin plate bending finite element, numerical manifold method(NMM) was introduced to solve thin plate bending deformation problem. Rectangular mesh was adopted as mathematical mesh to form f'mite element cover system, and then 16-cover manifold element was proposed. Numerical manifold formulas were constructed on the basis of minimum potential energy principle, displacement boundary conditions are implemented by penalty function method, and all the element matrixes were derived in details. The 16-cover element has a simple calculation process for employing only the transverse displacement cover DOFs as the basic unknown variables, and has been proved to meet the requirements of completeness and full compatibility. As an application, the presented 16-cover element has been used to analyze bending deformation of square thin plate under different loads and boundary conditions, and the results show that numerical manifold method with compatible element, compared with finite element method, can improve computational accuracy and convergence greatly.
基金supported by the Fund of National Engineering and Research Center for Highways in Mountain Area(No.gsgzj-2012-05)the Fundamental Research Funds for the Central Universities of China(No.CDJXS12240003)the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS201213)
文摘A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.