Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuron...Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time.展开更多
Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techni...Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techniques involved in the fabrication ofμLED-based devices is transfer printing.Although numerous methods have been proposed for transfer printing,improving the yield ofμLED arrays is still a formidable task.In this paper,we propose a novel method for improving the yield ofμLED arrays transferred by the stamping method,using an innovative design of piezoelectrically driven asymmetric micro-gripper.Traditional grippers are too large to manipulateμLEDs,and therefore two micro-sized cantilevers are added at the gripper tips.AμLED manipulation system is constructed based on the micro-gripper together with a three-dimensional positioning system.Experimental results using this system show that it can be used successfully to manipulateμLED arrays.展开更多
Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some succes...Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some success in mitigating heat stress(HS)in broilers.Developing novel HS mitigation strategies for sustaining broiler production is critically needed.This study investigated the effects of pre-hatch thermal manipulation(TM)and post-hatch baica-lein supplementation on growth performance and health parameters in heat-stressed broilers.Results Six hundred fertile Cobb 500 eggs were incubated for 21 d.After candling on embryonic day(ED)10,238 eggs were thermally manipulated at 38.5℃ with 55%relative humidity(RH)from ED 12 to 18,then transferred to the hatcher(ED 19 to 21,standard temperature)and 236 eggs were incubated at a controlled temperature(37.5℃)till hatch.After hatch,180-day-old chicks from both groups were raised in 36 pens(n=10 birds/pen,6 replicates per treatment).The treatments were:1)Control,2)TM,3)control heat stress(CHS),4)thermal manipulation heat stress(TMHS),5)control heat stress supplement(CHSS),and 6)thermal manipulation heat stress supplement(TMHSS).All birds were raised under the standard environment for 21 d,followed by chronic heat stress from d 22 to 35(32–33℃ for 8 h)in the CHS,TMHS,CHSS,and TMHSS groups.A thermoneutral(22–24℃)environment was maintained in the Control and TM groups.RH was constant(50%±5%)throughout the trial.All the data were analyzed using one-way ANOVA in R and GraphPad software at P<0.05 and are presented as mean±SEM.Heat stress significantly decreased(P<0.05)the final body weight and ADG in CHS and TMHS groups compared to the other groups.Embryonic TM significantly increased(P<0.05)the expression of heat shock protein-related genes(HSP70,HSP90,and HSPH1)and antioxidant-related genes(GPX1 and TXN).TMHS birds showed a significant increment(P<0.05)in total cecal volatile fatty acid(VFA)concentration compared to the CHS birds.The cecal microbial analysis showed significant enrichment(P<0.05)in alpha and beta diversity and Coprococcus in the TMHSS group.Conclusions Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens’growth performance,upregulate favorable gene expression,increase VFA produc-tion,and promote gut health by increasing beneficial microbial communities.展开更多
A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the ...A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the two PIN diodes between ON and OFF states, the isotropic and anisotropic reflections can be flexibly achieved. For either the isotropic reflection or the anisotropic reflection, the two operation states achieve the reflection coefficients with approximately equal magnitude and 180°out of phase, thus giving rise to the isotropic/anisotropic 1-bit metasurface unit cells. With the 1-bit unit cells, a 12-by-12 metasurface reflectarray is optimally designed and fabricated. Under either y-or x-polarized incident wave illumination, the reflectarray can achieve the co-polarized and cross-polarized beam scanning, respectively, with the peak gains of 20.08 d Bi and 17.26 d Bi within the scan range of about ±50°. With the right-handed circular polarization(RHCP) excitation, the left-handed circular polarization(LHCP) radiation with the peak gain of 16.98 d Bic can be achieved within the scan range of ±50°. Good agreement between the experimental results and the simulation results are observed for 2D beam steering and polarization manipulation capabilities.展开更多
The integration of WhatsApp,a widely-used instant messaging application(IMA),into the realm of orthopaedics and trauma surgery has emerged as a significant development in recent years.This paper explores the multiface...The integration of WhatsApp,a widely-used instant messaging application(IMA),into the realm of orthopaedics and trauma surgery has emerged as a significant development in recent years.This paper explores the multifaceted role of WhatsApp in orthopaedics,focusing on its clinical and non-clinical applications,advantages,disadvantages,and future prospects.The study synthesizes findings from various research papers,emphasizing the growing reliance on mobile technology in healthcare.WhatsApp’s role in orthopaedics is notable for its ease of use,real-time communication,and accessibility.Clinically,it facilitates triage,teleconsultation,diagnosis,treatment,patient advice,and post-operative monitoring.Non-clinically,it supports telemedicine,teleradiology,virtual frac-ture clinics,research,and education in orthopaedic surgery.The application has proven beneficial in enhancing communication among healthcare teams,providing quick responses,and motivating junior physicians.Its use in educational settings has been shown to improve learner’s understanding and patient care.However,the use of WhatsApp in orthopaedics is not without challenges.Risks include the potential spread of misleading information,privacy concerns,and issues with image quality affecting diagnosis and treatment decisions.The paper acknowledges the importance of maintaining professional boundaries and the need for oversight measures to ensure content accuracy.Looking forward,the potential of WhatsApp and similar IMAs in orthopaedics lies in their ability to streamline data collection and retrieval,improve doctor-patient communication,and address challenges like bureaucratic red tape and limited resources.The paper suggests that future orthopaedic practice,particularly in emergency departments,will increasingly rely on such technologies for efficient patient management.This shift,however,must be approached with an understanding of the ethical,legal,and practical implications of integrating social media and mobile technology in healthcare.展开更多
Traditional Chinese spinal orthopedic manipulation(TCSOM)is an external therapeutic method of traumatology and orthopedics of traditional Chinese medicine to treat trauma and set bone.The doctor exerts his force throu...Traditional Chinese spinal orthopedic manipulation(TCSOM)is an external therapeutic method of traumatology and orthopedics of traditional Chinese medicine to treat trauma and set bone.The doctor exerts his force through thumb or bilateral upper extremities on the spine or acupoints of the patient,applying various manipulatory techniques according to the conditions.Correcting the abnormal position or state of the spine serve as the most important theoretical foundation for TCSOM to treat spinal disorders and spinogenic disorders.This paper presented the definition and function of the TCSOM,with a special focus on how to make a preliminary diagnosis of spinal segments disorders,and the indications of TCSOM in different spinal segments.展开更多
As a cross-lingual, cross-cultural, cross-time-and-space communication, religious translation has inevitably been stamped, from the very beginning, with the brand of ideology and has, more or less, been restrained by ...As a cross-lingual, cross-cultural, cross-time-and-space communication, religious translation has inevitably been stamped, from the very beginning, with the brand of ideology and has, more or less, been restrained by political factors there and then. The translated version, very often, cannot truly mirror the essence of the source text mainly because translation is manipulated by the power discourse in the target culture.展开更多
Teleoperation is of great importance in the area of robotics,especially when people are unavailable in the robot workshop.It provides a way for people to control robots remotely using human intelligence.In this paper,...Teleoperation is of great importance in the area of robotics,especially when people are unavailable in the robot workshop.It provides a way for people to control robots remotely using human intelligence.In this paper,a robotic teleoperation system for precise robotic manipulation is established.The data glove and the 7-degrees of freedom(DOFs)force feedback controller are used for the remote control interaction.The control system and the monitor system are designed for the remote precise manipulation.The monitor system contains an image acquisition system and a human-machine interaction module,and aims to simulate and detect the robot running state.Besides,a visual object tracking algorithm is developed to estimate the states of the dynamic system from noisy observations.The established robotic teleoperation systemis applied to a series of experiments,and high-precision results are obtained,showing the effectiveness of the physical system.展开更多
Ruminants utilize a wide variety of dietary substrates that are not digestible by the mammals, through microbial fermentation taking place in the rumen. Recent advanced molecular based approaches have allowed the char...Ruminants utilize a wide variety of dietary substrates that are not digestible by the mammals, through microbial fermentation taking place in the rumen. Recent advanced molecular based approaches have allowed the characterization of rumen microbiota and its compositional changes under various treatment conditions.However, the knowledge is still limited on the impacts of variations in the rumen microbiota on host biology and function. This review summarizes the information to date on host-microbial interactions in the rumen and how we can apply such information to seek the opportunities to enhance the animal performance through manipulating the rumen function.展开更多
Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an...Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an optical nanofiber(550 nm in diameter) injected by an 808-nm laser light.The nanoparticles situated in the evanescent optical field are trapped by optical gradient force and move along the direction of light propagation due to optical scattering force.The velocities reach as high as 132 μm/s at an optical power of 80 mW.展开更多
A new method ,which is called image manipulation, is introduced to analyze the cavitation of flow field for the first time. As the complexity of the cavitation development must be considering, only the method of ima...A new method ,which is called image manipulation, is introduced to analyze the cavitation of flow field for the first time. As the complexity of the cavitation development must be considering, only the method of image manipulation can calculate the strength of the cavitation more accurately. This method based on wavelet transform is used to eliminate the noise. The area of the cavitations is deduced to serve as the strength of cavitation. The method is applied in an example of inducer's rotating cavitation. The results show that using image manipulation can get the accurate date of cavitation with ease,and the reason of the inducer shaft's vibration is uncovered clearly.展开更多
Optogenetics is a new and rapidly evolving gene and neuroengineering technology that allows optical control of specific populations of neurons without affecting other neurons in the brain at high temporal and spatial ...Optogenetics is a new and rapidly evolving gene and neuroengineering technology that allows optical control of specific populations of neurons without affecting other neurons in the brain at high temporal and spatial resolution. By heterologous expression of the light-sensitive membrane proteins, cell type-specific depolarization or hyperpolarization can be optically induced on a millisecond time scale. Optogenetics has the higher selectivity and specificity compared to traditional electrophysiological techniques and pharmaceutical methods. It has been a novel promising tool for medical research. Because of easy handling, high temporal and spatial precision, optogenetics has been applied to many aspects of nervous system research, such as tactual neural circuit, visual neural circuit, auditory neural circuit and olfactory neural circuit, as well as research of some neurological diseases. The review highlights the recent advances of optogenetics in medical study.展开更多
Molecular spintronics is an emerging field which evoked wide research attention since the first molecule-based spintronic device has been reported at 2002. Due to the active study over the last few years, it is found ...Molecular spintronics is an emerging field which evoked wide research attention since the first molecule-based spintronic device has been reported at 2002. Due to the active study over the last few years, it is found that the interfaces in spintronic device, so called spinterface, is of critical importance for many key issues in molecular spintronics, such as enhancing spin injection, lengthening spin transport distance, as well as manipulating spin signals in molecular spintronic devices. Here in this review, recent studies regarding spinterface in molecular devices, especially those impressive efforts devoted on spin manipulation, have been systematically summarized and discussed.展开更多
Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degr...Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degree of freedom(DOF), which is infeasible to the optimization of binary control multi-DOF system. A novel optimization method using for the locomotion and manipulation of an 18 DOFs tetrahedron-based mechanism called 5-TET is proposed. The optimization objective is to realize the required locomotion by executing the least number of struts.Binary control strategy is adopted, and forward kinematic and tipping dynamic analyses are performed, respectively.Based on a developed genetic algorithm(GA), the optimal number of alternative struts between two adjacent steps is obtained as 5. Finally, a potential manipulation function is proposed, and the energy consumption comparison between optimal 5-TET and the traditional wheeled robot is carried out. The presented locomotion optimization and manipulation planning enrich the research of tetrahedron-based mechanisms and provide the instruction to the successive locomotion and operation planning of multi-DOF mechanisms.展开更多
On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precisi...On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precision, while inducing no disturbances to its base attitude. To this end, decomposition of the target dynamics from the base dynamics is discussed, so that they can be considered as two independent subsystems. A reactionless nonlinear controller is presented, which ensures high-precision manipulation of the targets and that the base orientation is unchanged. This is achieved by combining the robust finite-time control with the reaction null space. Finally, the performance of the proposed method is examined by comparing it with that of a reactionless PD controller and a pure finite-time controller.展开更多
To observe the effects of different acupuncture manipulations on blood pressure and target organ damage in spontaneously hypertensive rats(SHRs), this study used the reinforcing twirling method(1.5–2-mm depth; rot...To observe the effects of different acupuncture manipulations on blood pressure and target organ damage in spontaneously hypertensive rats(SHRs), this study used the reinforcing twirling method(1.5–2-mm depth; rotating needle clockwise for 360° and then counter clockwise for 360°, with the thumb moving heavily forward and gently backward, 60 times per minute for 1 minute, and retaining needle for 9 minutes), the reducing twirling method(1.5–2-mm depth; rotating needle counter clockwise for 360° and then clockwise for 360°, with the thumb moving heavily backward and gently forward, 60 times per minute for 1 minute, and retaining needle for 9 minutes), and the needle retaining method(1.5–2-mm depth and retaining the needle for 10 minutes). Bilateral Taichong(LR3) was treated by acupuncture using different manipulations and manual stimulation. Reinforcing twirling, reducing twirling, and needle retaining resulted in a decreased number of apoptotic cells, reduced Bax m RNA and protein expression, and an increased Bcl-2/Bax ratio in the hippocampus compared with the SHR group. Among these groups, the Bcl-2/Bax protein ratio was highest in the reducing twirling group, and the Bcl-2/Bax m RNA ratio was highest in the needle retaining group. These results suggest that reinforcing twirling, reducing twirling, and needle retaining methods all improve blood pressure and prevent target organ damage by increasing the hippocampal Bcl-2/Bax ratio and inhibiting cell apoptosis in the hippocampus in SHR.展开更多
Artificial microstructures,which allow us to control and change the properties of wave fields through changing the geometrical parameters and the arrangements of microstructures,have attracted plenty of attentions in ...Artificial microstructures,which allow us to control and change the properties of wave fields through changing the geometrical parameters and the arrangements of microstructures,have attracted plenty of attentions in the past few decades.Some artificial microstructure based research areas,such as metamaterials,metasurfaces and phononic topological insulators,have seen numerous novel applications and phenomena.The manipulation of different dimensions(phase,amplitude,frequency or polarization)of wave fields,particularly,can be easily achieved at subwavelength scales by metasurfaces.In this review,we focus on the recent developments of wave field manipulations based on artificial microstructures and classify some important applications from the viewpoint of different dimensional manipulations of wave fields.The development tendency of wave field manipulation from single-dimension to multidimensions provides a useful guide for researchers to realize miniaturized and integrated optical and acoustic devices.展开更多
Objective: To analyze the effects of twirling reinforcing and reducing manipulations on protein expression in parietal cortex of spontaneously hypertensive rats(SHRs), and elucidate the main mechanisms and differences...Objective: To analyze the effects of twirling reinforcing and reducing manipulations on protein expression in parietal cortex of spontaneously hypertensive rats(SHRs), and elucidate the main mechanisms and differences between two manipulations in hypertension treatment.Methods: Rats were randomly divided into the control, model, twirling reinforcing manipulation(TRFM),and twirling reducing manipulation(TRDM) groups. The control and model groups received catch and fixation stimulations once a day for 14 days. The TRFM and TRDM groups were intervened once a day for 20 min for 14 days. On days 0, 2, 6, 10, and 14 after acupuncture, rat systolic blood pressures(SBPs) were measured. Differential protein(DP) expression in the rat parietal cortices was detected. Thereafter, GO functional significance and KEGG pathway enrichment analyses were performed.Results: Compared with the model group, SBP of rats in the TRDM and TRFM groups decreased on days 6 and 10 of acupuncture, respectively(P=.009;P <.001). Moreover, SBP of the TRDM group was significantly lower than that of the TRFM group on days 10 and 14 of acupuncture(P=.015;P=.013).Compared with control group, 601 and 1040 DPs were up-and downregulated, respectively, in the model group. Compared with model group, 44 and 28 up-and downregulated DPs were expressed, respectively,in the TRFM group. Compared with model group, expression of 616 and 427 up-and downregulated DPs,respectively, was found in the TRDM group. After combining the results of GO and KEGG enrichment analyses, five and one pathways were found to be related to the central antihypertensive mechanism of the parietal cortex during twirling reducing and reinforcing manipulations, respectively.Conclusion: TRDM showed a more effective antihypertensive effect on SHRs than TRFM;this antihypertensive effect was related to the regulation of different proteins and their biological functions.展开更多
Development of tools that can manipulate gene expression specifically and efficiently in the trophectoderm(TE) lineage would greatly aid understanding the roles of different genetic pathways in TE versus embryonic l...Development of tools that can manipulate gene expression specifically and efficiently in the trophectoderm(TE) lineage would greatly aid understanding the roles of different genetic pathways in TE versus embryonic lineages. Here, we showed first time that short-term lentivirus infection of porcine blastocysts could lead to rapid expression of transgene specifically in TE cells. Efficient TE-specific gene knockdown could also be achieved by lentivirus-mediated pol III-driven short hairpin RNA(shRNA) and TE-specific gene expression could be temporal controlled efficiently by combining this system with Tet-On system. This lentivirus lineage-specific infection system would facilitate gene function studies in porcine pre-implatation embryos by specifically knockdown or overexpression of these genes in TE.展开更多
The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to ...The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to achieve an ultra-high integration density. In particular, silicon nanophotonic integrated devices for on-chip light manipulation have been developed successfully and have played very import roles in various applications. In this paper, we review the recent progress of silicon nanophotonic devices for on-chip light manipulation, including the static type and the dynamic type. Static onchip light manipulation focuses on polarization/mode manipulation, as well as light nanofocusing, while dynamic on-chip light manipulation focuses on optical modulation/switching. The challenges and prospects of high-performance silicon nanophotonic integrated devices for on-chip light manipulation are discussed.展开更多
文摘Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time.
基金support from the Scientific Research Program of the Tianjin Education Commission(No.2019ZD08).
文摘Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techniques involved in the fabrication ofμLED-based devices is transfer printing.Although numerous methods have been proposed for transfer printing,improving the yield ofμLED arrays is still a formidable task.In this paper,we propose a novel method for improving the yield ofμLED arrays transferred by the stamping method,using an innovative design of piezoelectrically driven asymmetric micro-gripper.Traditional grippers are too large to manipulateμLEDs,and therefore two micro-sized cantilevers are added at the gripper tips.AμLED manipulation system is constructed based on the micro-gripper together with a three-dimensional positioning system.Experimental results using this system show that it can be used successfully to manipulateμLED arrays.
基金The research was funded by a USDA Multistate(2052R)grant from the CTAHR University of Hawaii at Manoa to B.M.
文摘Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some success in mitigating heat stress(HS)in broilers.Developing novel HS mitigation strategies for sustaining broiler production is critically needed.This study investigated the effects of pre-hatch thermal manipulation(TM)and post-hatch baica-lein supplementation on growth performance and health parameters in heat-stressed broilers.Results Six hundred fertile Cobb 500 eggs were incubated for 21 d.After candling on embryonic day(ED)10,238 eggs were thermally manipulated at 38.5℃ with 55%relative humidity(RH)from ED 12 to 18,then transferred to the hatcher(ED 19 to 21,standard temperature)and 236 eggs were incubated at a controlled temperature(37.5℃)till hatch.After hatch,180-day-old chicks from both groups were raised in 36 pens(n=10 birds/pen,6 replicates per treatment).The treatments were:1)Control,2)TM,3)control heat stress(CHS),4)thermal manipulation heat stress(TMHS),5)control heat stress supplement(CHSS),and 6)thermal manipulation heat stress supplement(TMHSS).All birds were raised under the standard environment for 21 d,followed by chronic heat stress from d 22 to 35(32–33℃ for 8 h)in the CHS,TMHS,CHSS,and TMHSS groups.A thermoneutral(22–24℃)environment was maintained in the Control and TM groups.RH was constant(50%±5%)throughout the trial.All the data were analyzed using one-way ANOVA in R and GraphPad software at P<0.05 and are presented as mean±SEM.Heat stress significantly decreased(P<0.05)the final body weight and ADG in CHS and TMHS groups compared to the other groups.Embryonic TM significantly increased(P<0.05)the expression of heat shock protein-related genes(HSP70,HSP90,and HSPH1)and antioxidant-related genes(GPX1 and TXN).TMHS birds showed a significant increment(P<0.05)in total cecal volatile fatty acid(VFA)concentration compared to the CHS birds.The cecal microbial analysis showed significant enrichment(P<0.05)in alpha and beta diversity and Coprococcus in the TMHSS group.Conclusions Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens’growth performance,upregulate favorable gene expression,increase VFA produc-tion,and promote gut health by increasing beneficial microbial communities.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1401001)the National Natural Science Foundation of China (Grant No.62371355)。
文摘A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the two PIN diodes between ON and OFF states, the isotropic and anisotropic reflections can be flexibly achieved. For either the isotropic reflection or the anisotropic reflection, the two operation states achieve the reflection coefficients with approximately equal magnitude and 180°out of phase, thus giving rise to the isotropic/anisotropic 1-bit metasurface unit cells. With the 1-bit unit cells, a 12-by-12 metasurface reflectarray is optimally designed and fabricated. Under either y-or x-polarized incident wave illumination, the reflectarray can achieve the co-polarized and cross-polarized beam scanning, respectively, with the peak gains of 20.08 d Bi and 17.26 d Bi within the scan range of about ±50°. With the right-handed circular polarization(RHCP) excitation, the left-handed circular polarization(LHCP) radiation with the peak gain of 16.98 d Bic can be achieved within the scan range of ±50°. Good agreement between the experimental results and the simulation results are observed for 2D beam steering and polarization manipulation capabilities.
文摘The integration of WhatsApp,a widely-used instant messaging application(IMA),into the realm of orthopaedics and trauma surgery has emerged as a significant development in recent years.This paper explores the multifaceted role of WhatsApp in orthopaedics,focusing on its clinical and non-clinical applications,advantages,disadvantages,and future prospects.The study synthesizes findings from various research papers,emphasizing the growing reliance on mobile technology in healthcare.WhatsApp’s role in orthopaedics is notable for its ease of use,real-time communication,and accessibility.Clinically,it facilitates triage,teleconsultation,diagnosis,treatment,patient advice,and post-operative monitoring.Non-clinically,it supports telemedicine,teleradiology,virtual frac-ture clinics,research,and education in orthopaedic surgery.The application has proven beneficial in enhancing communication among healthcare teams,providing quick responses,and motivating junior physicians.Its use in educational settings has been shown to improve learner’s understanding and patient care.However,the use of WhatsApp in orthopaedics is not without challenges.Risks include the potential spread of misleading information,privacy concerns,and issues with image quality affecting diagnosis and treatment decisions.The paper acknowledges the importance of maintaining professional boundaries and the need for oversight measures to ensure content accuracy.Looking forward,the potential of WhatsApp and similar IMAs in orthopaedics lies in their ability to streamline data collection and retrieval,improve doctor-patient communication,and address challenges like bureaucratic red tape and limited resources.The paper suggests that future orthopaedic practice,particularly in emergency departments,will increasingly rely on such technologies for efficient patient management.This shift,however,must be approached with an understanding of the ethical,legal,and practical implications of integrating social media and mobile technology in healthcare.
基金The study was supported by the High Level Talent Training Project of“Six Talents Summit”of Jiangsu Province(No.2016-WSN-004)Scientific and Technologic Project of Jiangsu Administration of Traditional Chinese Medicine(No.YB201851).
文摘Traditional Chinese spinal orthopedic manipulation(TCSOM)is an external therapeutic method of traumatology and orthopedics of traditional Chinese medicine to treat trauma and set bone.The doctor exerts his force through thumb or bilateral upper extremities on the spine or acupoints of the patient,applying various manipulatory techniques according to the conditions.Correcting the abnormal position or state of the spine serve as the most important theoretical foundation for TCSOM to treat spinal disorders and spinogenic disorders.This paper presented the definition and function of the TCSOM,with a special focus on how to make a preliminary diagnosis of spinal segments disorders,and the indications of TCSOM in different spinal segments.
文摘As a cross-lingual, cross-cultural, cross-time-and-space communication, religious translation has inevitably been stamped, from the very beginning, with the brand of ideology and has, more or less, been restrained by political factors there and then. The translated version, very often, cannot truly mirror the essence of the source text mainly because translation is manipulated by the power discourse in the target culture.
基金NSFC-Shenzhen Robotics Research Center Project(No.U2013207)the Beijing Science and Technology Plan Project(No.Z191100008019008)。
文摘Teleoperation is of great importance in the area of robotics,especially when people are unavailable in the robot workshop.It provides a way for people to control robots remotely using human intelligence.In this paper,a robotic teleoperation system for precise robotic manipulation is established.The data glove and the 7-degrees of freedom(DOFs)force feedback controller are used for the remote control interaction.The control system and the monitor system are designed for the remote precise manipulation.The monitor system contains an image acquisition system and a human-machine interaction module,and aims to simulate and detect the robot running state.Besides,a visual object tracking algorithm is developed to estimate the states of the dynamic system from noisy observations.The established robotic teleoperation systemis applied to a series of experiments,and high-precision results are obtained,showing the effectiveness of the physical system.
文摘Ruminants utilize a wide variety of dietary substrates that are not digestible by the mammals, through microbial fermentation taking place in the rumen. Recent advanced molecular based approaches have allowed the characterization of rumen microbiota and its compositional changes under various treatment conditions.However, the knowledge is still limited on the impacts of variations in the rumen microbiota on host biology and function. This review summarizes the information to date on host-microbial interactions in the rumen and how we can apply such information to seek the opportunities to enhance the animal performance through manipulating the rumen function.
文摘Gold nanoparticles are gaining increasing attention due to their biological and medical applications.In this letter,we experimentally demonstrate the optical manipulation of 250-nm-diameter gold nanoparticles along an optical nanofiber(550 nm in diameter) injected by an 808-nm laser light.The nanoparticles situated in the evanescent optical field are trapped by optical gradient force and move along the direction of light propagation due to optical scattering force.The velocities reach as high as 132 μm/s at an optical power of 80 mW.
文摘A new method ,which is called image manipulation, is introduced to analyze the cavitation of flow field for the first time. As the complexity of the cavitation development must be considering, only the method of image manipulation can calculate the strength of the cavitation more accurately. This method based on wavelet transform is used to eliminate the noise. The area of the cavitations is deduced to serve as the strength of cavitation. The method is applied in an example of inducer's rotating cavitation. The results show that using image manipulation can get the accurate date of cavitation with ease,and the reason of the inducer shaft's vibration is uncovered clearly.
基金National Natural Sciences Foundation of China (No.81070749)Chongqing Science and Technology Project,China (No.CSTC,2010AB5118)
文摘Optogenetics is a new and rapidly evolving gene and neuroengineering technology that allows optical control of specific populations of neurons without affecting other neurons in the brain at high temporal and spatial resolution. By heterologous expression of the light-sensitive membrane proteins, cell type-specific depolarization or hyperpolarization can be optically induced on a millisecond time scale. Optogenetics has the higher selectivity and specificity compared to traditional electrophysiological techniques and pharmaceutical methods. It has been a novel promising tool for medical research. Because of easy handling, high temporal and spatial precision, optogenetics has been applied to many aspects of nervous system research, such as tactual neural circuit, visual neural circuit, auditory neural circuit and olfactory neural circuit, as well as research of some neurological diseases. The review highlights the recent advances of optogenetics in medical study.
基金Project supported by the National Natural Science Foundation of China(Grant No.21673059)the Funds from Ministry of Science and Technology of China(Grant Nos.2017YFA0206600 and 2016YFA0200700)+1 种基金the Instrument Development Project of Chinese Academy of Sciences(Grant No.YJKYYQ20170037)the CAS Pioneer Hundred Talents Program
文摘Molecular spintronics is an emerging field which evoked wide research attention since the first molecule-based spintronic device has been reported at 2002. Due to the active study over the last few years, it is found that the interfaces in spintronic device, so called spinterface, is of critical importance for many key issues in molecular spintronics, such as enhancing spin injection, lengthening spin transport distance, as well as manipulating spin signals in molecular spintronic devices. Here in this review, recent studies regarding spinterface in molecular devices, especially those impressive efforts devoted on spin manipulation, have been systematically summarized and discussed.
基金Supported by National Science-Technology Support Plan Projects of China (Grant No.2015BAK04B00)2015 Sino-German Postdoc Scholarship Program (Grant No.57165010)
文摘Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degree of freedom(DOF), which is infeasible to the optimization of binary control multi-DOF system. A novel optimization method using for the locomotion and manipulation of an 18 DOFs tetrahedron-based mechanism called 5-TET is proposed. The optimization objective is to realize the required locomotion by executing the least number of struts.Binary control strategy is adopted, and forward kinematic and tipping dynamic analyses are performed, respectively.Based on a developed genetic algorithm(GA), the optimal number of alternative struts between two adjacent steps is obtained as 5. Finally, a potential manipulation function is proposed, and the energy consumption comparison between optimal 5-TET and the traditional wheeled robot is carried out. The presented locomotion optimization and manipulation planning enrich the research of tetrahedron-based mechanisms and provide the instruction to the successive locomotion and operation planning of multi-DOF mechanisms.
文摘On-orbit servicing requires efficient techniques for manipulating passive objects. The paper aims at developing a reactionless control method that drives the manipulator to manipulate passive objects with high precision, while inducing no disturbances to its base attitude. To this end, decomposition of the target dynamics from the base dynamics is discussed, so that they can be considered as two independent subsystems. A reactionless nonlinear controller is presented, which ensures high-precision manipulation of the targets and that the base orientation is unchanged. This is achieved by combining the robust finite-time control with the reaction null space. Finally, the performance of the proposed method is examined by comparing it with that of a reactionless PD controller and a pure finite-time controller.
基金supported by the National Natural Science Foundation of China,No.81072861,81373727
文摘To observe the effects of different acupuncture manipulations on blood pressure and target organ damage in spontaneously hypertensive rats(SHRs), this study used the reinforcing twirling method(1.5–2-mm depth; rotating needle clockwise for 360° and then counter clockwise for 360°, with the thumb moving heavily forward and gently backward, 60 times per minute for 1 minute, and retaining needle for 9 minutes), the reducing twirling method(1.5–2-mm depth; rotating needle counter clockwise for 360° and then clockwise for 360°, with the thumb moving heavily backward and gently forward, 60 times per minute for 1 minute, and retaining needle for 9 minutes), and the needle retaining method(1.5–2-mm depth and retaining the needle for 10 minutes). Bilateral Taichong(LR3) was treated by acupuncture using different manipulations and manual stimulation. Reinforcing twirling, reducing twirling, and needle retaining resulted in a decreased number of apoptotic cells, reduced Bax m RNA and protein expression, and an increased Bcl-2/Bax ratio in the hippocampus compared with the SHR group. Among these groups, the Bcl-2/Bax protein ratio was highest in the reducing twirling group, and the Bcl-2/Bax m RNA ratio was highest in the needle retaining group. These results suggest that reinforcing twirling, reducing twirling, and needle retaining methods all improve blood pressure and prevent target organ damage by increasing the hippocampal Bcl-2/Bax ratio and inhibiting cell apoptosis in the hippocampus in SHR.
基金This work was supported by the National Key Research and Development Program of China(2016YFA0301102 and 2017YFA0303800)the National Natural Science Fund for Distinguished Young Scholar(11925403)+2 种基金the National Natural Science Foundation of China(11974193,91856101,and 11774186)Natural Science Foundation of Tianjin for Distinguished Young Scientists(18JCJQJC45700)the China Postdoctoral Science Foundation(2020M680851).
文摘Artificial microstructures,which allow us to control and change the properties of wave fields through changing the geometrical parameters and the arrangements of microstructures,have attracted plenty of attentions in the past few decades.Some artificial microstructure based research areas,such as metamaterials,metasurfaces and phononic topological insulators,have seen numerous novel applications and phenomena.The manipulation of different dimensions(phase,amplitude,frequency or polarization)of wave fields,particularly,can be easily achieved at subwavelength scales by metasurfaces.In this review,we focus on the recent developments of wave field manipulations based on artificial microstructures and classify some important applications from the viewpoint of different dimensional manipulations of wave fields.The development tendency of wave field manipulation from single-dimension to multidimensions provides a useful guide for researchers to realize miniaturized and integrated optical and acoustic devices.
基金supported by the National Natural Science Foundation of China (81774413 and 82074553)。
文摘Objective: To analyze the effects of twirling reinforcing and reducing manipulations on protein expression in parietal cortex of spontaneously hypertensive rats(SHRs), and elucidate the main mechanisms and differences between two manipulations in hypertension treatment.Methods: Rats were randomly divided into the control, model, twirling reinforcing manipulation(TRFM),and twirling reducing manipulation(TRDM) groups. The control and model groups received catch and fixation stimulations once a day for 14 days. The TRFM and TRDM groups were intervened once a day for 20 min for 14 days. On days 0, 2, 6, 10, and 14 after acupuncture, rat systolic blood pressures(SBPs) were measured. Differential protein(DP) expression in the rat parietal cortices was detected. Thereafter, GO functional significance and KEGG pathway enrichment analyses were performed.Results: Compared with the model group, SBP of rats in the TRDM and TRFM groups decreased on days 6 and 10 of acupuncture, respectively(P=.009;P <.001). Moreover, SBP of the TRDM group was significantly lower than that of the TRFM group on days 10 and 14 of acupuncture(P=.015;P=.013).Compared with control group, 601 and 1040 DPs were up-and downregulated, respectively, in the model group. Compared with model group, 44 and 28 up-and downregulated DPs were expressed, respectively,in the TRFM group. Compared with model group, expression of 616 and 427 up-and downregulated DPs,respectively, was found in the TRDM group. After combining the results of GO and KEGG enrichment analyses, five and one pathways were found to be related to the central antihypertensive mechanism of the parietal cortex during twirling reducing and reinforcing manipulations, respectively.Conclusion: TRDM showed a more effective antihypertensive effect on SHRs than TRFM;this antihypertensive effect was related to the regulation of different proteins and their biological functions.
基金Supported by the Scientifi c Research Fund of Heilongjiang Provincial Education Department(11551039)
文摘Development of tools that can manipulate gene expression specifically and efficiently in the trophectoderm(TE) lineage would greatly aid understanding the roles of different genetic pathways in TE versus embryonic lineages. Here, we showed first time that short-term lentivirus infection of porcine blastocysts could lead to rapid expression of transgene specifically in TE cells. Efficient TE-specific gene knockdown could also be achieved by lentivirus-mediated pol III-driven short hairpin RNA(shRNA) and TE-specific gene expression could be temporal controlled efficiently by combining this system with Tet-On system. This lentivirus lineage-specific infection system would facilitate gene function studies in porcine pre-implatation embryos by specifically knockdown or overexpression of these genes in TE.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars(Grant No.61725503)Zhejiang Provincial Natural Science Foundation(Grant No.Z18F050002)+1 种基金the National Natural Science Foundation of China(Grant Nos.61431166001 and 11861121002)the National Major Research and Development Program of China(Grant No.2016YFB0402502)
文摘The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to achieve an ultra-high integration density. In particular, silicon nanophotonic integrated devices for on-chip light manipulation have been developed successfully and have played very import roles in various applications. In this paper, we review the recent progress of silicon nanophotonic devices for on-chip light manipulation, including the static type and the dynamic type. Static onchip light manipulation focuses on polarization/mode manipulation, as well as light nanofocusing, while dynamic on-chip light manipulation focuses on optical modulation/switching. The challenges and prospects of high-performance silicon nanophotonic integrated devices for on-chip light manipulation are discussed.