This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for tradition...This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for traditional industrial manipulator systems cannot be directly used to the space ones due to the special space environment and compactness. Considering the extremely tight constraints on mass, power consumption, volume, cost and "design-to-orbit" schedules, the fault-tolerant control system is developed mainly based on commercial-off-the-shaft components. The features of the hardware and software of the fault-tolerant control system are presented. The performance specifications are also discussed. Because many space proven design technologies and experiences are adopted, the fault-tolerant control system is characterized by high reliability and practicability.展开更多
Redundant or hyper-redundant mobile manipulator can give lots of assistance to astronauts in space station. The design and implementation of a hyper-redundant mobile manipulator system are described, which is composed...Redundant or hyper-redundant mobile manipulator can give lots of assistance to astronauts in space station. The design and implementation of a hyper-redundant mobile manipulator system are described, which is composed of an 8 DOF module robot and a 1 DOF motorized rail. Inverse kinematic resolution of the system is discussed and one simplified control method based on joint limit avoidance and configuration optimization is proposed. Simulation and experimental results are presented.展开更多
Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is p...Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is proposed in this paper, which can attain sub-micron-seale precision over the cubic centimeter motion range. This paper introduces the mechanical system architecture based on the wide-range flexure hinges, analyzes the kinematics via stiffness matrices, presents the control system configuration and control strategy, and finally gives the system performance test results.展开更多
The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This s...The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.展开更多
Aimed at capture task for a free-floating space manipulator, a scheme of pre-impact trajectory planning for minimizing base attitude disturbance caused by impact is proposed in this paper.Firstly, base attitude distur...Aimed at capture task for a free-floating space manipulator, a scheme of pre-impact trajectory planning for minimizing base attitude disturbance caused by impact is proposed in this paper.Firstly, base attitude disturbance is established as a function of joint angles, collision direction and relative velocity between robotic hand and the target.Secondly, on the premise of keeping correct capture pose, a novel optimization factor in null space is designed to minimize base attitude disturbance and ensure that the joint angles do not exceed their limits simultaneously.After reaching the balance state, a desired configuration is achieved at the contact point.Thereafter, particle swarm optimization(PSO) algorithm is employed to solve the pre-impact trajectory planning from its initial configuration to the desired configuration to achieve the minimized base attitude disturbance caused by impact and the correct capture pose simultaneously.Finally, the proposed method is applied to a 7-dof free-floating space manipulator and the simulation results verify the effectiveness.展开更多
An improved design, which employs the integration of optic, mechanical and electronic technologies for the next generation large radio telescope, is presented in this note. The authors propose the concept of parallel ...An improved design, which employs the integration of optic, mechanical and electronic technologies for the next generation large radio telescope, is presented in this note. The authors propose the concept of parallel macro-micro manipulator system from the feed support structure with a rough tuning subsystem based on a cable structure and a fine tuning subsystem based on the Stewart platform. According to the requirement of astronomical observation, the inverse kinematics model of this parallel macro-micro manipulator system is deduced. This inverse kinematics model is necessary for the computer-controlled motion of feed.展开更多
A new motion planning method is proposed for enlarging the solvable space of zero-disturbance motion planning for the space free-floating manipulator system. First, a class of translational zero-disturbance curves is ...A new motion planning method is proposed for enlarging the solvable space of zero-disturbance motion planning for the space free-floating manipulator system. First, a class of translational zero-disturbance curves is put forward for the first time. The equation of translational zero-disturbance curve is deduced using the nonholonomic constraint of the manipulator system, and its characteristics are also discussed. Second, the zero-disturbance curve of the whole operating process is divided into two segments. The first one is a translational zero-disturbance curve which passes through the target point. Another one is a common zero-disturbance curve which passes through the original point and intersects with the translational zero-disturbance curve. Finally, the common zero-disturbance curve is obtained by a hybrid programming strategy based on Gauss pseudo-spectral method (GPM) and direct shooting method (DSM). The numerical simulation results indicate that the proposed method is effective, and that the solvable space of this method almost covers the whole work space of the manipulator system.展开更多
This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncerta...This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncertainties considered was established. To simultaneously suppress the violation of tracking error constraints and the complexity of differential explosion, a barrier Lyapunov functionsbased dynamic surface control(BLF-DSC) method was proposed for the position tracking control of the ammunition manipulator. Theoretical analysis prove the stability of the closed-loop overall system and the tracking error converges to a prescribed neighborhood asymptotically. The effectiveness and dynamic tracking performance of the proposed control strategy is validated via simulation and experimental results.展开更多
This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manip...This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manipulator possesses the advantages of wide operating range, high speed, and low energy consumption, but the disadvantage of a low tracking precision. The macro-micro manipulator system improves tracking performance by compensating for the endpoint tracking error while maintaining the advantages of the flexible macro manipulator. A trajectory planning scheme was built utilizing the task space division method. The division point is chosen to optimize the error compensation and energy consumption for the whole system. Then movements of the macro-micro manipulator can be determined using separate inverse kinematic models. Simulation results for a planar 4-DOF macro-micro manipulator system are presented to show the effectiveness of the control system.展开更多
In concentrated solar power(CSP) generating stations, incident solar energy is reflected from a large number of mirrors or heliostats to a faraway receiver. In typical CSP installations, the mirror needs to be moved...In concentrated solar power(CSP) generating stations, incident solar energy is reflected from a large number of mirrors or heliostats to a faraway receiver. In typical CSP installations, the mirror needs to be moved about two axes independently using two actuators in series with the mirror effectively mounted at a single point. A three degree-of-freedom parallel manipulator, namely the 3-RPS parallel manipulator, is proposed to track the sun. The proposed 3-RPS parallel manipulator supports the load of the mirror, structure and wind loading at three points resulting in less deflection, and thus a much larger mirror can be moved with the required tracking accuracy and without increasing the weight of the support structure. The kinematics equations to determine motion of the actuated prismatic joints in the 3-RPS parallel manipulator such that the sun's rays are reflected on to a stationary receiver are developed. Using finite element analysis, it is shown that for same sized mirror, wind loading and maximum deflection requirement, the weight of the support structure is between 15% and 60% less with the 3-RPS parallel manipulator when compared to azimuth-elevation or the target-aligned configurations.展开更多
A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,...A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,the structure of the manipulator-type HIL simulation system is explained.The mass and the flexibility of the manipulator has an important influence on the stability of the HIL system,which is the premise of accurately simulating actual space docking.Thus,the docking HIL simulation models of rigid,flexible and flexible-light space manipulators are established.The characteristics of the three HIL systems are studied from three important aspects:the system parameter configuration relation,the system stability condition and the dynamics frequency simulation ability.The key conclusions obtained were that the system satisfies stability or reproduction accuracy.Meanwhile,the influence of different manipulators on the system stability is further analyzed.The accuracy of the calculated results is verified experimentally.展开更多
An extensive research activity has been focused on the upper and lower limbs of humanoid robots. However, due to mechanical design difficulties and complex control of multi-body system, the torso of humanoid robot is ...An extensive research activity has been focused on the upper and lower limbs of humanoid robots. However, due to mechanical design difficulties and complex control of multi-body system, the torso of humanoid robot is somehow a neglected or simplified design part. In this paper, operation performance of a new waist-trunk system as torso for humanoid robots is presented through results of lab experimental tests. The proposed waist-trunk system is composed of two 3 DOFs (degrees of freedom) parallel manipulators, which are connected in a serial chain architecture. A prototype is built by using two prototypes of CaPaMan (Cassino Parallel Manipulator), which are convenient stiff architectures with easy-operation characteristics. Experimental tests are carried out with the aims to imitate lateral-bending and transverse-rotation movements of human torso. Operation performances like displacements, accelerations, and actuation torque are measured for a performance evaluation and design characterization of the used manipulator solution imitating human torso. Experimental test results are illustrated and discussed to show the practical operation feasibility of the proposed architecture and the operation characteristics of the built prototype.展开更多
To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,wh...To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.展开更多
Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techni...Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techniques involved in the fabrication ofμLED-based devices is transfer printing.Although numerous methods have been proposed for transfer printing,improving the yield ofμLED arrays is still a formidable task.In this paper,we propose a novel method for improving the yield ofμLED arrays transferred by the stamping method,using an innovative design of piezoelectrically driven asymmetric micro-gripper.Traditional grippers are too large to manipulateμLEDs,and therefore two micro-sized cantilevers are added at the gripper tips.AμLED manipulation system is constructed based on the micro-gripper together with a three-dimensional positioning system.Experimental results using this system show that it can be used successfully to manipulateμLED arrays.展开更多
Conventional robotic manipulators consist of touch and vision sensors in order to pick and place differently shaped objects.Due to the technology development and degrading sensors over a long period,the stereo vision ...Conventional robotic manipulators consist of touch and vision sensors in order to pick and place differently shaped objects.Due to the technology development and degrading sensors over a long period,the stereo vision technique has become a promising alternative.In this study,a low-cost stereo vision-based system,and a gripper to be placed at the end of the robot arm(Fanuc M10 iA/12)are developed for position and orientation estimation of robotic manipulators to pick and place different shaped objects.The stereo vision system developed in this research is used to estimate the position(X,Y,Z),orientation(P_(y))of the Center of Volume of four standard objects(cube,cuboid,cylinder,and sphere)whereas the robot arm with the gripper is used to mechanically pick and place the objects.The stereo vision system is placed on the movable robot arm,and it consists of two cameras to capture two 2D views of a stationary object to derive 3D depth information in 3D space.Moreover,a graphical user interface is developed to train a linear regression model,live predict the coordinates of the objects,and check the accuracy of the predicted data.The graphical user interface can also send predicted coordinates and angles to the gripper and the robot arm.The project is facilitated with python programming language modules and image processing techniques.Identification of the stationary object and estimation of its coordinates is done using image processing techniques.The final product can be identified as a device that converts conventional robot arms without an image processing vision system into a highly precise and accurate robot arm with an image processing vision system.Experimental studies are performed to test the efficiency and effectiveness of used techniques and the gripper prototype.Necessary actions are taken to minimize the errors in position and orientation estimation.In addition,as a future implementation,an embedded system will be developed with a user-friendly software interface to install the vision system into the Fanuc M10 iA/12 robot arm and will upgrade the system to a device that can be implemented with any kind of customized robot arms available in the industry.展开更多
The problem of self-tuning control with a two-manipulator system holding a rigid object in the presence of inaccurate translational base frame parameters is addressed. An adaptive robust neural controller is proposed ...The problem of self-tuning control with a two-manipulator system holding a rigid object in the presence of inaccurate translational base frame parameters is addressed. An adaptive robust neural controller is proposed to cope with inaccurate translational base frame parameters, internal force, modeling uncertainties, joint friction, and external disturbances. A radial basis function neural network is adopted for all kinds of dynamical estimation, including undesired internal force. To validate the effectiveness of the proposed approach, together with simulation studies and analysis, the position tracking errors are shown to asymptotically converge to zero, and the internal force can be maintained in a steady range. Using an adaptive engine, this approach permits accurate online calibration of the relative translational base frame parameters of the involved manipulators. Specialized robust compensation is established for global stability. Using a Lyapunov approach, the controller is proved robust in the face of inaccurate base frame parameters and the aforementioned uncertainties.展开更多
In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision...In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system.展开更多
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator ...Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
基金"863" National High Technology Foundation in Astronautics(2005AA742030)
文摘This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for traditional industrial manipulator systems cannot be directly used to the space ones due to the special space environment and compactness. Considering the extremely tight constraints on mass, power consumption, volume, cost and "design-to-orbit" schedules, the fault-tolerant control system is developed mainly based on commercial-off-the-shaft components. The features of the hardware and software of the fault-tolerant control system are presented. The performance specifications are also discussed. Because many space proven design technologies and experiences are adopted, the fault-tolerant control system is characterized by high reliability and practicability.
文摘Redundant or hyper-redundant mobile manipulator can give lots of assistance to astronauts in space station. The design and implementation of a hyper-redundant mobile manipulator system are described, which is composed of an 8 DOF module robot and a 1 DOF motorized rail. Inverse kinematic resolution of the system is discussed and one simplified control method based on joint limit avoidance and configuration optimization is proposed. Simulation and experimental results are presented.
文摘Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is proposed in this paper, which can attain sub-micron-seale precision over the cubic centimeter motion range. This paper introduces the mechanical system architecture based on the wide-range flexure hinges, analyzes the kinematics via stiffness matrices, presents the control system configuration and control strategy, and finally gives the system performance test results.
基金Supported by National Natural Science Foundation of China (Grant No.52275036)Key Research and Development Project of the Jiaxing Science and Technology Bureau (Grant No.2022BZ10004)。
文摘The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.
基金supported by the National Basic Research Program of China (No.2013CB733000)the National Natural Science Foundation of China (No.61175080)BUPT Excellent Ph.D.Students Foundation of China (No.CX201427)
文摘Aimed at capture task for a free-floating space manipulator, a scheme of pre-impact trajectory planning for minimizing base attitude disturbance caused by impact is proposed in this paper.Firstly, base attitude disturbance is established as a function of joint angles, collision direction and relative velocity between robotic hand and the target.Secondly, on the premise of keeping correct capture pose, a novel optimization factor in null space is designed to minimize base attitude disturbance and ensure that the joint angles do not exceed their limits simultaneously.After reaching the balance state, a desired configuration is achieved at the contact point.Thereafter, particle swarm optimization(PSO) algorithm is employed to solve the pre-impact trajectory planning from its initial configuration to the desired configuration to achieve the minimized base attitude disturbance caused by impact and the correct capture pose simultaneously.Finally, the proposed method is applied to a 7-dof free-floating space manipulator and the simulation results verify the effectiveness.
文摘An improved design, which employs the integration of optic, mechanical and electronic technologies for the next generation large radio telescope, is presented in this note. The authors propose the concept of parallel macro-micro manipulator system from the feed support structure with a rough tuning subsystem based on a cable structure and a fine tuning subsystem based on the Stewart platform. According to the requirement of astronomical observation, the inverse kinematics model of this parallel macro-micro manipulator system is deduced. This inverse kinematics model is necessary for the computer-controlled motion of feed.
文摘A new motion planning method is proposed for enlarging the solvable space of zero-disturbance motion planning for the space free-floating manipulator system. First, a class of translational zero-disturbance curves is put forward for the first time. The equation of translational zero-disturbance curve is deduced using the nonholonomic constraint of the manipulator system, and its characteristics are also discussed. Second, the zero-disturbance curve of the whole operating process is divided into two segments. The first one is a translational zero-disturbance curve which passes through the target point. Another one is a common zero-disturbance curve which passes through the original point and intersects with the translational zero-disturbance curve. Finally, the common zero-disturbance curve is obtained by a hybrid programming strategy based on Gauss pseudo-spectral method (GPM) and direct shooting method (DSM). The numerical simulation results indicate that the proposed method is effective, and that the solvable space of this method almost covers the whole work space of the manipulator system.
基金the National Natural Science Foundation of China, ChinaGrant ID: 11472137。
文摘This paper focuses on the dynamic tracking control of ammunition manipulator system. A standard state space model for the ammunition manipulator electro-hydraulic system(AMEHS) with inherent nonlinearities and uncertainties considered was established. To simultaneously suppress the violation of tracking error constraints and the complexity of differential explosion, a barrier Lyapunov functionsbased dynamic surface control(BLF-DSC) method was proposed for the position tracking control of the ammunition manipulator. Theoretical analysis prove the stability of the closed-loop overall system and the tracking error converges to a prescribed neighborhood asymptotically. The effectiveness and dynamic tracking performance of the proposed control strategy is validated via simulation and experimental results.
基金the National Natural Science Foundation of China (No. 60305008)
文摘This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manipulator possesses the advantages of wide operating range, high speed, and low energy consumption, but the disadvantage of a low tracking precision. The macro-micro manipulator system improves tracking performance by compensating for the endpoint tracking error while maintaining the advantages of the flexible macro manipulator. A trajectory planning scheme was built utilizing the task space division method. The division point is chosen to optimize the error compensation and energy consumption for the whole system. Then movements of the macro-micro manipulator can be determined using separate inverse kinematic models. Simulation results for a planar 4-DOF macro-micro manipulator system are presented to show the effectiveness of the control system.
基金Partially supported by the Solar Energy Research Institute for India and the United States(http://www.seriius.org)
文摘In concentrated solar power(CSP) generating stations, incident solar energy is reflected from a large number of mirrors or heliostats to a faraway receiver. In typical CSP installations, the mirror needs to be moved about two axes independently using two actuators in series with the mirror effectively mounted at a single point. A three degree-of-freedom parallel manipulator, namely the 3-RPS parallel manipulator, is proposed to track the sun. The proposed 3-RPS parallel manipulator supports the load of the mirror, structure and wind loading at three points resulting in less deflection, and thus a much larger mirror can be moved with the required tracking accuracy and without increasing the weight of the support structure. The kinematics equations to determine motion of the actuated prismatic joints in the 3-RPS parallel manipulator such that the sun's rays are reflected on to a stationary receiver are developed. Using finite element analysis, it is shown that for same sized mirror, wind loading and maximum deflection requirement, the weight of the support structure is between 15% and 60% less with the 3-RPS parallel manipulator when compared to azimuth-elevation or the target-aligned configurations.
基金Supported by the National Natural Science Foundation of China(51475116)。
文摘A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,the structure of the manipulator-type HIL simulation system is explained.The mass and the flexibility of the manipulator has an important influence on the stability of the HIL system,which is the premise of accurately simulating actual space docking.Thus,the docking HIL simulation models of rigid,flexible and flexible-light space manipulators are established.The characteristics of the three HIL systems are studied from three important aspects:the system parameter configuration relation,the system stability condition and the dynamics frequency simulation ability.The key conclusions obtained were that the system satisfies stability or reproduction accuracy.Meanwhile,the influence of different manipulators on the system stability is further analyzed.The accuracy of the calculated results is verified experimentally.
基金supported by the Chinese Scholarship Council (CSC) (Grant No. 2007U29139)
文摘An extensive research activity has been focused on the upper and lower limbs of humanoid robots. However, due to mechanical design difficulties and complex control of multi-body system, the torso of humanoid robot is somehow a neglected or simplified design part. In this paper, operation performance of a new waist-trunk system as torso for humanoid robots is presented through results of lab experimental tests. The proposed waist-trunk system is composed of two 3 DOFs (degrees of freedom) parallel manipulators, which are connected in a serial chain architecture. A prototype is built by using two prototypes of CaPaMan (Cassino Parallel Manipulator), which are convenient stiff architectures with easy-operation characteristics. Experimental tests are carried out with the aims to imitate lateral-bending and transverse-rotation movements of human torso. Operation performances like displacements, accelerations, and actuation torque are measured for a performance evaluation and design characterization of the used manipulator solution imitating human torso. Experimental test results are illustrated and discussed to show the practical operation feasibility of the proposed architecture and the operation characteristics of the built prototype.
基金Supported by the National Natural Science Foundation of China(No.11672290)
文摘To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.
基金support from the Scientific Research Program of the Tianjin Education Commission(No.2019ZD08).
文摘Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techniques involved in the fabrication ofμLED-based devices is transfer printing.Although numerous methods have been proposed for transfer printing,improving the yield ofμLED arrays is still a formidable task.In this paper,we propose a novel method for improving the yield ofμLED arrays transferred by the stamping method,using an innovative design of piezoelectrically driven asymmetric micro-gripper.Traditional grippers are too large to manipulateμLEDs,and therefore two micro-sized cantilevers are added at the gripper tips.AμLED manipulation system is constructed based on the micro-gripper together with a three-dimensional positioning system.Experimental results using this system show that it can be used successfully to manipulateμLED arrays.
文摘Conventional robotic manipulators consist of touch and vision sensors in order to pick and place differently shaped objects.Due to the technology development and degrading sensors over a long period,the stereo vision technique has become a promising alternative.In this study,a low-cost stereo vision-based system,and a gripper to be placed at the end of the robot arm(Fanuc M10 iA/12)are developed for position and orientation estimation of robotic manipulators to pick and place different shaped objects.The stereo vision system developed in this research is used to estimate the position(X,Y,Z),orientation(P_(y))of the Center of Volume of four standard objects(cube,cuboid,cylinder,and sphere)whereas the robot arm with the gripper is used to mechanically pick and place the objects.The stereo vision system is placed on the movable robot arm,and it consists of two cameras to capture two 2D views of a stationary object to derive 3D depth information in 3D space.Moreover,a graphical user interface is developed to train a linear regression model,live predict the coordinates of the objects,and check the accuracy of the predicted data.The graphical user interface can also send predicted coordinates and angles to the gripper and the robot arm.The project is facilitated with python programming language modules and image processing techniques.Identification of the stationary object and estimation of its coordinates is done using image processing techniques.The final product can be identified as a device that converts conventional robot arms without an image processing vision system into a highly precise and accurate robot arm with an image processing vision system.Experimental studies are performed to test the efficiency and effectiveness of used techniques and the gripper prototype.Necessary actions are taken to minimize the errors in position and orientation estimation.In addition,as a future implementation,an embedded system will be developed with a user-friendly software interface to install the vision system into the Fanuc M10 iA/12 robot arm and will upgrade the system to a device that can be implemented with any kind of customized robot arms available in the industry.
基金supported by the National Natural Science Foundation of China(No.51675470)the National Key R&D Program of China(No.2017YFB1301203)the Fundamental Research Funds for the Central Universities,China(No.2017QNA4001)
文摘The problem of self-tuning control with a two-manipulator system holding a rigid object in the presence of inaccurate translational base frame parameters is addressed. An adaptive robust neural controller is proposed to cope with inaccurate translational base frame parameters, internal force, modeling uncertainties, joint friction, and external disturbances. A radial basis function neural network is adopted for all kinds of dynamical estimation, including undesired internal force. To validate the effectiveness of the proposed approach, together with simulation studies and analysis, the position tracking errors are shown to asymptotically converge to zero, and the internal force can be maintained in a steady range. Using an adaptive engine, this approach permits accurate online calibration of the relative translational base frame parameters of the involved manipulators. Specialized robust compensation is established for global stability. Using a Lyapunov approach, the controller is proved robust in the face of inaccurate base frame parameters and the aforementioned uncertainties.
文摘In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system.
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
基金supported by Natural Science Basic Research Program of Shaanxi(2022JQ-593)Key Research and Development Program of Shaanxi(2022GY-089)。
文摘Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.