Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Kn...Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Knowing how to select an appropriate test can lead to more accurate results. Invalid results and misleading conclusions may be drawn from a study if an incorrect statistical test is used. Therefore, to avoid these it is essential to understand the nature of the data, the research question, and the assumptions of the tests before selecting one. This is because there are a wide variety of tests available. This paper provides a step-by-step approach to selecting the right statistical test for any study, with an explanation of when it is appropriate to use it and relevant examples of each statistical test. Furthermore, this guide provides a comprehensive overview of the assumptions of each test and what to do if these assumptions are violated.展开更多
Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Kn...Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Knowing how to select an appropriate test can lead to more accurate results. Invalid results and misleading conclusions may be drawn from a study if an incorrect statistical test is used. Therefore, to avoid these it is essential to understand the nature of the data, the research question, and the assumptions of the tests before selecting one. This is because there are a wide variety of tests available. This paper provides a step-by-step approach to selecting the right statistical test for any study, with an explanation of when it is appropriate to use it and relevant examples of each statistical test. Furthermore, this guide provides a comprehensive overview of the assumptions of each test and what to do if these assumptions are violated.展开更多
Rainfall and temperature variability analysis is important for researchers and policy formulators in making critical decisions on water availability and use in communities. The Western Sahel, which comprises Mali is c...Rainfall and temperature variability analysis is important for researchers and policy formulators in making critical decisions on water availability and use in communities. The Western Sahel, which comprises Mali is considered as one of the vulnerable regions to climate change, and also encountered the challenges of climatic shocks such as flood and drought. This research therefore sought to investigate climate change effects on hydrological events and trends in Sahelian rainfall intensity using Bamako (Mali) as a case study from 1991 to 2020, as limited data availability did not allow an extended period of study. Monthly observed data provided by MALI-METEO was used to validate daily rainfalls data from African Rainfall Climatology Version 2 (ARC2) satellite-based rainfall product on monthly basis. The validated model performance used Nash-Sutcliffe Efficiency (NSE) and Percent Bias (PBAIS) and gave results of 0.904 and 1.0506 respectively. Trends in annual maximum temperatures and rainfalls were analyzed using Mann-Kendall trend test. The result indicated that the trend in annual maximum rainfalls was decreasing, while annual total rainfall was increasing but not significant at 5% significance level. The rate of increase in annual total rainfalls was 0.475 mm/year according to the observed annual rainfall series and decreased to 0.68 mm/year in annual maximum. The analysis further found that annual maximum temperatures were increasing at the rate of 0.03°C/year at 5% significance level. To provide more accurate climate predictions, it is recommended that further studies on rainfall and temperature with data sets spanning 60 - 90 years be carried out.展开更多
Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tari...Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.展开更多
Rockbursts have become a significant hazard in underground mining,underscoring the need for a robust early warning model to ensure safety management.This study presents a novel approach for rockburst prediction,integr...Rockbursts have become a significant hazard in underground mining,underscoring the need for a robust early warning model to ensure safety management.This study presents a novel approach for rockburst prediction,integrating the Mann-Kendall trend test(MKT)and multi-indices fusion to enable real-time and quantitative assessment of rockburst hazards.The methodology employed in this study involves the development of a comprehensive precursory index library for rockbursts.The MKT is then applied to analyze the real-time trend of each index,with adherence to rockburst characterization laws serving as the warning criterion.By employing a confusion matrix,the warning effectiveness of each index is assessed,enabling index preference determination.Ultimately,the integrated rockburst hazard index Q is derived through data fusion.The results demonstrate that the proposed model achieves a warning effectiveness of 0.563 for Q,surpassing the performance of any individual index.Moreover,the model’s adaptability and scalability are enhanced through periodic updates driven by actual field monitoring data,making it suitable for complex underground working environments.By providing an efficient and accurate basis for decision-making,the proposed model holds great potential for the prevention and control of rockbursts.It offers a valuable tool for enhancing safety measures in underground mining operations.展开更多
We propose a new nonparametric test based on the rank difference between the paired sample for testing the equality of the marginal distributions from a bivariate distribution. We also consider a modification of the n...We propose a new nonparametric test based on the rank difference between the paired sample for testing the equality of the marginal distributions from a bivariate distribution. We also consider a modification of the novel nonparametric test based on the test proposed by Baumgartern, Weiβ, and Schindler (1998). An extensive numerical power comparison for various parametric and nonparametric tests was conducted under a wide range of bivariate distributions for small sample sizes. The two new nonparametric tests have comparable power to the paired t test for the data simulated from bivariate normal distributions, and are generally more powerful than the paired t test and other commonly used nonparametric tests in several important bivariate distributions.展开更多
The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wo...The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wolfowitz one-sample runs test for randomness, to present a novel approach for computing this probability, and to compare the four procedures by generating samples of 10 and 11 data points, varying the parameters n<sub>0</sub> (number of zeros) and n<sub>1</sub> (number of ones), as well as the number of runs. Fifty-nine samples are created to replicate the behavior of the distribution of the number of runs with 10 and 11 data points. The exact two-tailed probabilities for the four procedures were compared using Friedman’s test. Given the significant difference in central tendency, post-hoc comparisons were conducted using Conover’s test with Benjamini-Yekutielli correction. It is concluded that the procedures of Real Statistics using Excel and R exhibit some inadequacies in the calculation of the exact two-tailed probability, whereas the new proposal and the SPSS procedure are deemed more suitable. The proposed robust algorithm has a more transparent rationale than the SPSS one, albeit being somewhat more conservative. We recommend its implementation for this test and its application to others, such as the binomial and sign test.展开更多
Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leadi...Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leading to incorrect inferences and conclusions,and ultimately affecting the validity and accuracy of statistical inferences.Considering this,the study designs a unified analysis scheme for different data types based on parametric statistical test methods and non-parametric test methods.The data were grouped according to sample type and divided into discrete data and continuous data.To account for differences among subgroups,the conventional chi-squared test was used for discrete data.The normal distribution is the basis of many statistical methods;if the data does not follow a normal distribution,many statistical methods will fail or produce incorrect results.Therefore,before data analysis and modeling,the data were divided into normal and non-normal groups through normality testing.For normally distributed data,parametric statistical methods were used to judge the differences between groups.For non-normal data,non-parametric tests were employed to improve the accuracy of the analysis.Statistically significant indicators were retained according to the significance index P-value of the statistical test or corresponding statistics.These indicators were then combined with relevant medical background to further explore the etiology leading to the occurrence or transformation of diabetes status.展开更多
This paper is focused on the goodness-of-fit test of the functional linear composite quantile regression model.A nonparametric test is proposed by using the orthogonality of the residual and its conditional expectatio...This paper is focused on the goodness-of-fit test of the functional linear composite quantile regression model.A nonparametric test is proposed by using the orthogonality of the residual and its conditional expectation under the null model.The proposed test statistic has an asymptotic standard normal distribution under the null hypothesis,and tends to infinity in probability under the alternative hypothesis,which implies the consistency of the test.Furthermore,it is proved that the test statistic converges to a normal distribution with nonzero mean under a local alternative hypothesis.Extensive simulations are reported,and the results show that the proposed test has proper sizes and is sensitive to the considered model discrepancies.The proposed methods are also applied to two real datasets.展开更多
Vegetation is the main component of the terrestrial ecosystem and plays a key role in global climate change. Remotely sensed vegetation indices are widely used to detect vegetation trends at large scales. To understan...Vegetation is the main component of the terrestrial ecosystem and plays a key role in global climate change. Remotely sensed vegetation indices are widely used to detect vegetation trends at large scales. To understand the trends of vegetation cover, this research examined the spatial-temporal trends of global vegetation by employing the normalized difference vegetation index(NDVI) from the Advanced Very High Resolution Radiometer(AVHRR) Global Inventory Modeling and Mapping Studies(GIMMS) time series(1982–2015). Ten samples were selected to test the temporal trend of NDVI, and the results show that in arid and semi-arid regions, NDVI showed a deceasing trend, while it showed a growing trend in other regions. Mann-Kendal(MK) trend test results indicate that 83.37% of NDVI pixels exhibited positive trends and that only 16.63% showed negative trends(P < 0.05) during the period from 1982 to 2015. The increasing NDVI trends primarily occurred in tree-covered regions because of forest growth and re-growth and also because of vegetation succession after a forest disturbance. The increasing trend of the NDVI in cropland regions was primarily because of the increasing cropland area and the improvement in planting techniques. This research describes the spatial vegetation trends at a global scale over the past 30+ years, especially for different land cover types.展开更多
Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistic...Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators.展开更多
Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 ...Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 meteorological stations in Wuyi Mountains and its adjacent regions to analyze the spatio-temporal patterns of temperature change.The results show that Wuyi Mountains have experienced significant warming from 1961 to 2018.The warming trend of the mean temperature is 0.20℃/decade,the maximum temperature is 0.17℃/decade,and the minimum temperature is 0.26℃/decade.In 1961-1990,more than 63%of the stations showed a decreasing trend in annual mean temperature,mainly because the maximum temperature decreased during this period.However,in 1971-2000,1981-2010 and 1991-2018,the maximum,minimum and mean temperatures increased.The fastest increasing trend of mean temperature occurred in the southeastern coastal plains,the quickest increasing trend of maximum temperature occurred in the northwestern mountainous region,and the increase of minimum temperature occurred faster in the southeastern coastal and northwestern mountainous regions than that in the central area.Meanwhile,this study suggests that elevation does not affect warming in the Wuyi Mountains.These results are beneficial for understanding climate change in humid subtropical middle and low mountains.展开更多
The surface solar radiation in most parts of the world has undergone a phenomenon known as global dimming and brightening,characterized by an initial decrease followed by an increase.As a result,the sunshine duration(...The surface solar radiation in most parts of the world has undergone a phenomenon known as global dimming and brightening,characterized by an initial decrease followed by an increase.As a result,the sunshine duration(SD)has decreased in the past 60 years.Against the backdrop of global dimming and brightening,SD has decreased to varying degrees in many regions of China.Using the observed data of SD,cloud amount(total cloud amount and low cloud amount,abbreviated as TCA and LCA),precipitation,and relative humidity(RH)from 34 meteorological stations in Chongqing during the period of 1961-2020,along with a digital elevation model(DEM)with a resolution of 90 m,this study analyzed the spatiotemporal variations and influencing factors of SD.The analysis employed methods such as linear regression,Mann-Kendall test,wavelet transformation,and DEM-based possible SD distributed model.The results showed that the annual SD in Chongqing has significantly decreased over the last 60 years,with a decreasing interannual trend rate(ITR)of 40.4 h/10a.Except for no obvious trend in spring,SD decreased significantly in summer,autumn and winter at the ITR of 21.1 h/10a,8.5 h/10a and 7.5 h/10a,respectively.An abrupt decrease in the annual SD was found in 1979.The difference before and after the abrupt decrease was 177.7 h.The difference before and after the abrupt decrease was 177.7 h.The annual SD possessed the oscillation period of 11a.The spatial heterogeneity of the mean annual SD during the last 60 years was obvious.The distribution of SD in Chongqing is high in the northeast and low in the southeast.In addition,about 73%of the total area in Chongqing showed a significant and very significant decreasing trend.The regions with significant changes are mainly concentrated in the regions with altitudes of 200~1000 m.The increasing LCA was the main cause of the decrease of the annual SD in the regions with 200-400 m altitude decreased the most and changed the most.Increasing LCA is the primary cause of the reduction in annual SD,showing a strong negative correlation coefficient of-0.7292.In Chongqing,PM2.5 concentration showed a significant decrease trend in annual,spring,autumn and winter during 2000-2020,but the significant correlation between PM2.5 concentration and SD was only in autumn and reached an extremely significant level.展开更多
文摘Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Knowing how to select an appropriate test can lead to more accurate results. Invalid results and misleading conclusions may be drawn from a study if an incorrect statistical test is used. Therefore, to avoid these it is essential to understand the nature of the data, the research question, and the assumptions of the tests before selecting one. This is because there are a wide variety of tests available. This paper provides a step-by-step approach to selecting the right statistical test for any study, with an explanation of when it is appropriate to use it and relevant examples of each statistical test. Furthermore, this guide provides a comprehensive overview of the assumptions of each test and what to do if these assumptions are violated.
文摘Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Knowing how to select an appropriate test can lead to more accurate results. Invalid results and misleading conclusions may be drawn from a study if an incorrect statistical test is used. Therefore, to avoid these it is essential to understand the nature of the data, the research question, and the assumptions of the tests before selecting one. This is because there are a wide variety of tests available. This paper provides a step-by-step approach to selecting the right statistical test for any study, with an explanation of when it is appropriate to use it and relevant examples of each statistical test. Furthermore, this guide provides a comprehensive overview of the assumptions of each test and what to do if these assumptions are violated.
文摘Rainfall and temperature variability analysis is important for researchers and policy formulators in making critical decisions on water availability and use in communities. The Western Sahel, which comprises Mali is considered as one of the vulnerable regions to climate change, and also encountered the challenges of climatic shocks such as flood and drought. This research therefore sought to investigate climate change effects on hydrological events and trends in Sahelian rainfall intensity using Bamako (Mali) as a case study from 1991 to 2020, as limited data availability did not allow an extended period of study. Monthly observed data provided by MALI-METEO was used to validate daily rainfalls data from African Rainfall Climatology Version 2 (ARC2) satellite-based rainfall product on monthly basis. The validated model performance used Nash-Sutcliffe Efficiency (NSE) and Percent Bias (PBAIS) and gave results of 0.904 and 1.0506 respectively. Trends in annual maximum temperatures and rainfalls were analyzed using Mann-Kendall trend test. The result indicated that the trend in annual maximum rainfalls was decreasing, while annual total rainfall was increasing but not significant at 5% significance level. The rate of increase in annual total rainfalls was 0.475 mm/year according to the observed annual rainfall series and decreased to 0.68 mm/year in annual maximum. The analysis further found that annual maximum temperatures were increasing at the rate of 0.03°C/year at 5% significance level. To provide more accurate climate predictions, it is recommended that further studies on rainfall and temperature with data sets spanning 60 - 90 years be carried out.
基金Under the auspices of the Second-stage Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-XB2-03,KZCX2-YW-127)National Natural Science Foundation of China (No 40671014)Shanghai Academic Discipline Project (Human Geography) (No B410)
文摘Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant Nos.52011530037 and 51904019)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange&Growth Program(Grant No.QNXM20210004).We also greatly appreciate the assistance provided by Kuangou coal mine,China Energy Group Xinjiang Energy Co.,Ltd.
文摘Rockbursts have become a significant hazard in underground mining,underscoring the need for a robust early warning model to ensure safety management.This study presents a novel approach for rockburst prediction,integrating the Mann-Kendall trend test(MKT)and multi-indices fusion to enable real-time and quantitative assessment of rockburst hazards.The methodology employed in this study involves the development of a comprehensive precursory index library for rockbursts.The MKT is then applied to analyze the real-time trend of each index,with adherence to rockburst characterization laws serving as the warning criterion.By employing a confusion matrix,the warning effectiveness of each index is assessed,enabling index preference determination.Ultimately,the integrated rockburst hazard index Q is derived through data fusion.The results demonstrate that the proposed model achieves a warning effectiveness of 0.563 for Q,surpassing the performance of any individual index.Moreover,the model’s adaptability and scalability are enhanced through periodic updates driven by actual field monitoring data,making it suitable for complex underground working environments.By providing an efficient and accurate basis for decision-making,the proposed model holds great potential for the prevention and control of rockbursts.It offers a valuable tool for enhancing safety measures in underground mining operations.
文摘We propose a new nonparametric test based on the rank difference between the paired sample for testing the equality of the marginal distributions from a bivariate distribution. We also consider a modification of the novel nonparametric test based on the test proposed by Baumgartern, Weiβ, and Schindler (1998). An extensive numerical power comparison for various parametric and nonparametric tests was conducted under a wide range of bivariate distributions for small sample sizes. The two new nonparametric tests have comparable power to the paired t test for the data simulated from bivariate normal distributions, and are generally more powerful than the paired t test and other commonly used nonparametric tests in several important bivariate distributions.
文摘The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wolfowitz one-sample runs test for randomness, to present a novel approach for computing this probability, and to compare the four procedures by generating samples of 10 and 11 data points, varying the parameters n<sub>0</sub> (number of zeros) and n<sub>1</sub> (number of ones), as well as the number of runs. Fifty-nine samples are created to replicate the behavior of the distribution of the number of runs with 10 and 11 data points. The exact two-tailed probabilities for the four procedures were compared using Friedman’s test. Given the significant difference in central tendency, post-hoc comparisons were conducted using Conover’s test with Benjamini-Yekutielli correction. It is concluded that the procedures of Real Statistics using Excel and R exhibit some inadequacies in the calculation of the exact two-tailed probability, whereas the new proposal and the SPSS procedure are deemed more suitable. The proposed robust algorithm has a more transparent rationale than the SPSS one, albeit being somewhat more conservative. We recommend its implementation for this test and its application to others, such as the binomial and sign test.
基金National Natural Science Foundation of China(No.12271261)Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.SJCX230368)。
文摘Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leading to incorrect inferences and conclusions,and ultimately affecting the validity and accuracy of statistical inferences.Considering this,the study designs a unified analysis scheme for different data types based on parametric statistical test methods and non-parametric test methods.The data were grouped according to sample type and divided into discrete data and continuous data.To account for differences among subgroups,the conventional chi-squared test was used for discrete data.The normal distribution is the basis of many statistical methods;if the data does not follow a normal distribution,many statistical methods will fail or produce incorrect results.Therefore,before data analysis and modeling,the data were divided into normal and non-normal groups through normality testing.For normally distributed data,parametric statistical methods were used to judge the differences between groups.For non-normal data,non-parametric tests were employed to improve the accuracy of the analysis.Statistically significant indicators were retained according to the significance index P-value of the statistical test or corresponding statistics.These indicators were then combined with relevant medical background to further explore the etiology leading to the occurrence or transformation of diabetes status.
基金supported by the Natural Science Foundation of China under Grant Nos.11271014 and 11971045。
文摘This paper is focused on the goodness-of-fit test of the functional linear composite quantile regression model.A nonparametric test is proposed by using the orthogonality of the residual and its conditional expectation under the null model.The proposed test statistic has an asymptotic standard normal distribution under the null hypothesis,and tends to infinity in probability under the alternative hypothesis,which implies the consistency of the test.Furthermore,it is proved that the test statistic converges to a normal distribution with nonzero mean under a local alternative hypothesis.Extensive simulations are reported,and the results show that the proposed test has proper sizes and is sensitive to the considered model discrepancies.The proposed methods are also applied to two real datasets.
基金Under the auspices of National Natural Science Foundation of China(No.41771179,41871103,41771138)the National Key Research and Development Project(No.2016YFA0602301)
文摘Vegetation is the main component of the terrestrial ecosystem and plays a key role in global climate change. Remotely sensed vegetation indices are widely used to detect vegetation trends at large scales. To understand the trends of vegetation cover, this research examined the spatial-temporal trends of global vegetation by employing the normalized difference vegetation index(NDVI) from the Advanced Very High Resolution Radiometer(AVHRR) Global Inventory Modeling and Mapping Studies(GIMMS) time series(1982–2015). Ten samples were selected to test the temporal trend of NDVI, and the results show that in arid and semi-arid regions, NDVI showed a deceasing trend, while it showed a growing trend in other regions. Mann-Kendal(MK) trend test results indicate that 83.37% of NDVI pixels exhibited positive trends and that only 16.63% showed negative trends(P < 0.05) during the period from 1982 to 2015. The increasing NDVI trends primarily occurred in tree-covered regions because of forest growth and re-growth and also because of vegetation succession after a forest disturbance. The increasing trend of the NDVI in cropland regions was primarily because of the increasing cropland area and the improvement in planting techniques. This research describes the spatial vegetation trends at a global scale over the past 30+ years, especially for different land cover types.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2009AA011204)
文摘Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators.
基金supported by the Projects for National Natural Science Foundation of China(U22A20554)the Natural Science Foundation of Fujian Province(2023J01285)+1 种基金the Public Welfare Scientific Institutions of Fujian Province(2022R1002005)the Scientific Project from Fujian Provincial Department of Science and Technology(2022Y0007).
文摘Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 meteorological stations in Wuyi Mountains and its adjacent regions to analyze the spatio-temporal patterns of temperature change.The results show that Wuyi Mountains have experienced significant warming from 1961 to 2018.The warming trend of the mean temperature is 0.20℃/decade,the maximum temperature is 0.17℃/decade,and the minimum temperature is 0.26℃/decade.In 1961-1990,more than 63%of the stations showed a decreasing trend in annual mean temperature,mainly because the maximum temperature decreased during this period.However,in 1971-2000,1981-2010 and 1991-2018,the maximum,minimum and mean temperatures increased.The fastest increasing trend of mean temperature occurred in the southeastern coastal plains,the quickest increasing trend of maximum temperature occurred in the northwestern mountainous region,and the increase of minimum temperature occurred faster in the southeastern coastal and northwestern mountainous regions than that in the central area.Meanwhile,this study suggests that elevation does not affect warming in the Wuyi Mountains.These results are beneficial for understanding climate change in humid subtropical middle and low mountains.
基金the National Key R&D Program(Grant No.2019YFE0115200)Natural Science Foundation of China(Grants No.42071217).
文摘The surface solar radiation in most parts of the world has undergone a phenomenon known as global dimming and brightening,characterized by an initial decrease followed by an increase.As a result,the sunshine duration(SD)has decreased in the past 60 years.Against the backdrop of global dimming and brightening,SD has decreased to varying degrees in many regions of China.Using the observed data of SD,cloud amount(total cloud amount and low cloud amount,abbreviated as TCA and LCA),precipitation,and relative humidity(RH)from 34 meteorological stations in Chongqing during the period of 1961-2020,along with a digital elevation model(DEM)with a resolution of 90 m,this study analyzed the spatiotemporal variations and influencing factors of SD.The analysis employed methods such as linear regression,Mann-Kendall test,wavelet transformation,and DEM-based possible SD distributed model.The results showed that the annual SD in Chongqing has significantly decreased over the last 60 years,with a decreasing interannual trend rate(ITR)of 40.4 h/10a.Except for no obvious trend in spring,SD decreased significantly in summer,autumn and winter at the ITR of 21.1 h/10a,8.5 h/10a and 7.5 h/10a,respectively.An abrupt decrease in the annual SD was found in 1979.The difference before and after the abrupt decrease was 177.7 h.The difference before and after the abrupt decrease was 177.7 h.The annual SD possessed the oscillation period of 11a.The spatial heterogeneity of the mean annual SD during the last 60 years was obvious.The distribution of SD in Chongqing is high in the northeast and low in the southeast.In addition,about 73%of the total area in Chongqing showed a significant and very significant decreasing trend.The regions with significant changes are mainly concentrated in the regions with altitudes of 200~1000 m.The increasing LCA was the main cause of the decrease of the annual SD in the regions with 200-400 m altitude decreased the most and changed the most.Increasing LCA is the primary cause of the reduction in annual SD,showing a strong negative correlation coefficient of-0.7292.In Chongqing,PM2.5 concentration showed a significant decrease trend in annual,spring,autumn and winter during 2000-2020,but the significant correlation between PM2.5 concentration and SD was only in autumn and reached an extremely significant level.