期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Mantle convection modeling of the supercontinent cycle: Introversion,extroversion, or a combination? 被引量:5
1
作者 Masaki Yoshida M.Santosh 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第1期77-81,共5页
The periodic assembly and dispersal of continental fragments, referred to as the supercontinent cycle, bear close relation to the evolution of mantle convection and plate tectonics. Supercontinent formation involves c... The periodic assembly and dispersal of continental fragments, referred to as the supercontinent cycle, bear close relation to the evolution of mantle convection and plate tectonics. Supercontinent formation involves complex processes of "introversion" (closure of interior oceans), "extroversion" (closure of exterior oceans), or a combination of these processes in uniting dispersed continental fragments, Recent developments in numerical modeling and advancements in computation techniques enable us to simulate Earth's mantle convection with drifting continents under realistic convection vigor and rheology in Earth-like geometry (i.e., 3D spherical-shell). We report a numerical simulation of 3D mantle convection, incorporating drifting deformable continents, to evaluate supercontinent processes in a realistic mantle convection regime. Our results show that supercontinents are assembled by a combi- nation of introversion and extroversion processes. Small-scale thermal heterogeneity dominates deep mantle convection during the supercontinent cycle, although large-scale upwelling plumes intermit- tently originate under the drifting continents and/or the supercontinent. 展开更多
关键词 mantle convection Numerical simulation Tectonics Supercontinent cycle Introversion Extroversion
下载PDF
Upper mantle convection driving by density anomaly and a test model 被引量:1
2
作者 傅容珊 王景赟 +3 位作者 常筱华 黄建华 戴志阳 查显杰 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第1期27-33,124,共8页
A mathematic-physical convection model in upper mantle is established in this paper. This model is in a three dimensional frame. Assume that the density anomalies, which are mapped from the seismic tomography data, ar... A mathematic-physical convection model in upper mantle is established in this paper. This model is in a three dimensional frame. Assume that the density anomalies, which are mapped from the seismic tomography data, are responding to the temperature perturbation in the connective system. This model takes the density anomalies as the driving force for the mantle convection. We solve the basic equations with different boundary conditions in a domination of wave number by using the FFT arithmetic. In order to test the validity of our theory and method two simple models (higher-lower density body and break off slab) are employed to calculate their flow patters in this paper. Results show that our method can be directly used to investigate the upper mantle convection patterns and its related problems of lithospheric dynamics. 展开更多
关键词 mantle convection DYNAMICS seismic tomography
下载PDF
Parameterized thermal model of a mixed mantle convection 被引量:1
3
作者 张健 石耀霖 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第6期699-709,728,共12页
Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has ... Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has been carried out in this paper. We introduce a time-dependent parameter F, which denotes the ratio betWeen the mantle material involved in whole mantle convection and the material of the entire mantle, and introduce a local Rayleigh number Raloc as well as two critical numbers Ra1 and Ra2. These parameters are used to describe the stability of the phase boundary between the upper and lower mantle. The result shows that the mixed mantle convection model is able to simulate the episodic tectonic evolution of the Earth. 展开更多
关键词 thermal history of the Earth parameterized model mixed mantle convection
下载PDF
Upper mantle convection beneath northwest China and its adjacent region driven by density anomaly
4
作者 许萍 傅容珊 +2 位作者 黄建平 查显杰 戴志阳 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第5期552-562,共11页
We assume that the density anomalies, which are transformed from seismic tomography data, are corresponding to temperature distribution in a convective mantle. We take density anomalies as the driving force for mantle... We assume that the density anomalies, which are transformed from seismic tomography data, are corresponding to temperature distribution in a convective mantle. We take density anomalies as the driving force for mantle convection and solve the basic equation with given boundary conditions in a wave-number domain by using the FFT arithmetic. Using the physical model of upper mantle convection and the seismic tomography data supplied by XU et al, we calculated upper mantle convection beneath northwestern China and adjacent region. The flow patterns in the upper mantle show that there are upward and divergent flows in the basin regions, such as Tarim, Qaidam, Junggar and Kazakhstan, where the lithosphere is thin. There are downward and convergent flows in the mountain regions, such as Tianshan, Kunlun and Qilian, where the lithosphere is thick. In addition, because of the divergent flow under the Tarim Basin the upper mantle material in this region is driven southward to the north part of Tibetan Plateau and northward to Tianshan Mountain. Maybe, it is one of the reasons for the recent uplift of the Tianshaa Mountain. 展开更多
关键词 mantle convection northwestern China and its adjacent region seismic tomography
下载PDF
Influence of mantle convection to the crustal movement pattern in the northeastern margin of the Tibetan Plateau based on numerical simulation 被引量:3
5
作者 Aiyu ZHU Dongning ZHANG +1 位作者 Tao ZHU Yingxing GUO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第11期1644-1658,共15页
Based on the recent observations about the movement and rheological structure of the lithosphere and deformation pattern of the crust, we developed a three-dimensional finite element model for the northeastern margin ... Based on the recent observations about the movement and rheological structure of the lithosphere and deformation pattern of the crust, we developed a three-dimensional finite element model for the northeastern margin of the Tibetan Plateau.The model considered the impacts of both external and internal conditions, including mantle convection, gravitational potential energy and block interactions. We compared the simulated surface movement rates to the observed GPS velocities, and the results revealed that crustal movement gradually decreased toward the edge of the plateau. The factors controlling this pattern are the interactions of adjacent blocks, gravitational potential energy of the plateau, and also mantle convection as well. Additionally,according to the observation that there was an apparent difference between the horizontal movement rate of the lithosphere and convective velocity of the underlying mantle, and also based on the results of seismic anisotropy studies that suggest different strengths and deformation regimes of the lithosphere in different tectonic blocks, we proposed that the impact of mantle convection on the lithosphere may have varied in space, and introduced a parameter named mantle convection intensity factor in numerical simulations. Our simulation results show consistent surface movement rates with GPS observations, which further supports the viewpoint of seismic anisotropy studies, i.e., the degree of coupling between the crust and mantle varies significantly among different blocks. 展开更多
关键词 Northeastern margin of the Tibetan Plateau Crustal movement mantle convection Numerical simulation
原文传递
Numerical studies of the effects of phase transitions on Venusian mantle convection 被引量:2
6
作者 YANG An WENG HuiHui HUANG JinShui 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第10期1883-1894,共12页
This paper presents a study on the effects of phase transitions on the mantle convection of Venus in a three-dimensional (3D) spherical shell domain. Our model includes strong depth- and temperature-dependent viscos... This paper presents a study on the effects of phase transitions on the mantle convection of Venus in a three-dimensional (3D) spherical shell domain. Our model includes strong depth- and temperature-dependent viscosity and exothermic phase change from olivine to spinel as well as endothermic phase change from spinel to perovskite. From extensive numerical simulations of the effects of Rayleigh number (Ra), and the Clapeyron slopes and depths of phase changes, we found the following: (1) The endothermic phase change prevents mass flow through the interface. Increasing the absolute value of the Clapeyron slopes decreases radial mass flux and normalized radial mass flux at the endotbermic phase boundary, and decreases the number of mantle plumes. In other words, mass flow through the phase boundary decreases. The inhibition influence of phase changes increases, as do convective wavelengths. (2) Increasing Ra also increases the convective wavelength and decreases the number of mantle plumes, but it has less influence on the mass exchange. As Ra increases, the convective vigor increases along with the radial mass flux and the mass flow through the phase boundary; however, the normalized mass flux through the phase boundary varies little with Ra, which is different from the conclusion that increasing Ra will greatly increase the inhibition of mass flow through the phase boundary based on two-dimensional (2D) modeling. (3) Increasing the depth of endothermic phase change will slightly decrease the number of mantle plumes, but has little effect on the mass flow through the phase boundary. Consistent with previous studies, our results show that the phase change from spinel to perovskite could inhibit the mass flow through the phase boundary, but they also show that the buildup of hot materials under the endothermic phase boundary in the 3D model could not be so large as to cause strong episodic overturns of mantle materials, which is quite different from previous 2D studies. Our results suggest that it is difficult for phase changes to cause significant magmatism on Venus; in other words, phase changes may not be the primary cause of catastrophic resurfacing on Venus. 展开更多
关键词 VENUS catastrophic resurfacing mantle convection phase changes
原文传递
How Properties that Distinguish Solids from Fluids and Constraints of Spherical Geometry Suppress Lower Mantle Convection 被引量:1
7
作者 Anne M. Hofmeister Everett M. Criss 《Journal of Earth Science》 SCIE CAS CSCD 2018年第1期1-20,共20页
The large magnitude of the dimensionless Rayleigh number (Ra-10^8) for Earth's -3 000 km thick mantle is considered evidence of whole mantle convection. However, the current formulation assumes behavior characteris... The large magnitude of the dimensionless Rayleigh number (Ra-10^8) for Earth's -3 000 km thick mantle is considered evidence of whole mantle convection. However, the current formulation assumes behavior characteristic of gases and liquids and also assumes Cartesian geometry. Issues arising from neglecting physical properties unique to solids and ignoring the spherical shapes for planets include: (1) Planet radius must be incorporated into Ra, in addition to layer thickness, to conserve mass during radial displacements. (2) The vastly different rates for heat and mass diffusion in solids, which result from their decoupled transport mechanisms, promote stability. (3) Unlike liquids, sub- stantial stress is needed to deform solids, which independently promotes stability. (4) High interior compression stabilizes the mantle in additional minor ways. Therefore, representing conditions for convection in solid, self-gravitating spheroids, requires modifying formulae developed for bottom- heated fluids near ambient conditions under an invariant gravitational field. To derive stability criteria appropriate to solid spheres, we use dimensional analysis, and consider the effects of geometry, force competition, and microscopic behavior. We show that internal heating has been improperly ac- counted for in the Ra. We conclude that the lower mantle is stable for two independent reasons: heat diffusion far outpaces mass diffusion (creep) and yield strength of solids at high pressure exceeds the effective deviatoric stress. We discuss the role of partial melt in lubricating plate motion, and explain why the Ra is not applicable to the multi-component upper mantle. When conduction is insufficient to transport heat in the Earth, melt production and ascent are expected, not convection of solid rock. 展开更多
关键词 PLASTICITY diffusion mantle convection stability criteria dimensional analysis geometry.
原文传递
A helium stratified and ingassed lower mantle: resolving the helium paradoxes
8
作者 Honggang Zhu Xuefang Li Yingkui Xu 《Acta Geochimica》 EI CAS CSCD 2020年第1期4-10,共7页
It is generally believed a variation of 3He/4He isotopic ratios in the mantle is due to only the decay of U and Th,which produces4 He as well as heat.Here we show that not only3He/4He isotopic ratios but also helium c... It is generally believed a variation of 3He/4He isotopic ratios in the mantle is due to only the decay of U and Th,which produces4 He as well as heat.Here we show that not only3He/4He isotopic ratios but also helium contents can be fractionated by thermal diffusion in the lower mantle.The driving force for that fractionation is the adiabatic or convective temperature gradient,which always produces elemental and isotopic fractionation along temperature gradient by thermal diffusion with higher light/heavy isotopic ratio in the hot end.Our theoretical model and calculations indicate that the lower mantle is helium stratified,caused by thermal diffusion due to*400℃temperature contrast across the lower mantle.The highest3He/4He isotopic ratios and lowest He contents are in the lowermost mantle,which is a consequence of thermaldiffusion fractionation rather than the lower mantle is a primordial and undegassed reservoir.Therefore,oceanicisland basalts derived from the deepest lower mantle with high3He/4He isotopic ratios and less He contents—the long-standing helium paradox,is solved by our model.Because vigorous convection in the upper mantle had resulted in disordered or disorganized thermal-diffusion effects in He,Mid-ocean ridge basalts unaffected by mantle plume have a relatively homogenous and lower!3He/4He isotopic compositions.Our model also predicts that 3He/4He isotopic ratios in the deepest lower mantle of early Earth could be even higher than that of Jupiter,the initial He isotopic ratio in our solar system,because the temperature contrast across the lower mantle in the early Earth is the largest and less4 He had been produced by the decay of U and Th.Moreover,the early helium-stratified lower mantle owned the lowest He contents due to over-degassing caused by the largest temperature contrast.Consequently,succeeding evolution of the lower mantle is a He ingassed process due to secular cooling of the deepest mantle.This explains why significant amount of He produced by the decay of U and Th in the lower mantle were not released,another long-standing heat–helium paradox. 展开更多
关键词 Helium paradox Thermal diffusion mantle convection Adiabatic temperature gradient Primordial mantle Ingassed lower mantle
下载PDF
Pervasion degree of convective mixing and investigations of mantle mixing
9
作者 Rongshan Fu 《Earthquake Science》 CSCD 2009年第4期323-329,共7页
Geodynamic studies have shown that mantle convection is like a giant blender to make the original heterogeneous mantle mixing and homogenizing. However, some models, especially from geochemical data show that the mode... Geodynamic studies have shown that mantle convection is like a giant blender to make the original heterogeneous mantle mixing and homogenizing. However, some models, especially from geochemical data show that the modem mantle may still contain a number of reservoir bodies with different chemical composition. Then, the modern mantle is homogeneous? Authors have defined a box replacement degree of convective mantle mixing and pervasion degree of convective mantle mixing (that equals to initial density of tracing elements divided by final density of tracing elements) to investigate the mantle mixing. The previous results have shown that after four billion years the mantle is basic uniform and the box replacement of the convective mantle is more than 80% in steady-state convection models. This paper calculates and discusses the pervasion degree of convective mantle mixing in detail. For the initial state we will set some 10°× 10°(spacing 0.25°) tracing boxes, which includes 1 681 tracer, at the top and bottom of the mantle, and then track the motions of these tracers, and investigate the convective mixed pervasions. The results show that at the initial stage though the convective mixing pervasions are very different from mode to mode, after running for some time, the convective mixing pervasions for most modes are going to be a constant and the tracers are more evenly distributed in the whole mantle. 展开更多
关键词 mantle mixing mantle convection box replacement degree pervasion degree
下载PDF
Reviewing subduction initiation and the origin of plate tectonics:What do we learn from present-day Earth? 被引量:5
10
作者 Gang Lu Liang Zhao +2 位作者 Ling Chen Bo Wan FuYuan Wu 《Earth and Planetary Physics》 CSCD 2021年第2期123-140,共18页
The theory of plate tectonics came together in the 1960s,achieving wide acceptance after 1968.Since then it has been the most successful framework for investigations of Earth’s evolution.Subduction of the oceanic lit... The theory of plate tectonics came together in the 1960s,achieving wide acceptance after 1968.Since then it has been the most successful framework for investigations of Earth’s evolution.Subduction of the oceanic lithosphere,as the engine that drives plate tectonics,has played a key role in the theory.However,one of the biggest unanswered questions in Earth science is how the first subduction was initiated,and hence how plate tectonics began.The main challenge is how the strong lithosphere could break and bend if plate tectonics-related weakness and slab-pull force were both absent.In this work we review state-of-the-art subduction initiation(SI)models with a focus on their prerequisites and related driving mechanisms.We note that the plume-lithosphere-interaction and mantleconvection models do not rely on the operation of existing plate tectonics and thus may be capable of explaining the first SI.Reinvestigation of plate-driving mechanisms reveals that mantle drag may be the missing driving force for surface plates,capable of triggering initiation of the first subduction.We propose a composite driving mechanism,suggesting that plate tectonics may be driven by both subducting slabs and convection currents in the mantle.We also discuss and try to answer the following question:Why has plate tectonics been observed only on Earth? 展开更多
关键词 subduction initiation plate tectonics mantle convection driving force mantle drag
下载PDF
Tectonically asymmetric Earth:From net rotation to polarized westward drift of the lithosphere 被引量:5
11
作者 Carlo Doglioni Eugenio Carminati +3 位作者 Mattia Crespi Marco Cuffaro Mattia Penati Federica Riguzzi 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第3期401-418,共18页
The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophy... The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle) predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR) reference frame, and low (〈0.2°-0.4°/Ma) net rotation rates (deep hotspots source) predict an average net rotation in which some plates move eastward relative to the mantle (e.g., Nazca). With fast (〉1°/Ma) net rotation (shallow hotspots source), all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries. 展开更多
关键词 Asymmetric plate tectonics Plate motions Westward drift mantle convection
下载PDF
Complexity and Geodynamics of Ore-accumulating Basins in the Qinling Orogenic Belt,China 被引量:1
12
作者 FANG Weixuan ZHANG Guowei +1 位作者 LU Jiying LI Yaling 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期458-465,共8页
Researches were made of different continental-margin and intraplate basin systems in the Qinling microplate in terms of hydrothermal deposition, geodynamics of basin formation, hydrothermal sedimentary rock facies, sy... Researches were made of different continental-margin and intraplate basin systems in the Qinling microplate in terms of hydrothermal deposition, geodynamics of basin formation, hydrothermal sedimentary rock facies, syntectonics in the basins, and the styles of ore accumulation in the basins. 展开更多
关键词 GEODYNAMICS ore-accumulating basin shallow extension deep convergence mantle convection basin complexity basin-mountain coupling QINLING
下载PDF
Dynamic features of the Tianshan orogen deduced from satellitic gravity data 被引量:1
13
作者 楼海 王椿镛 王飞 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2000年第5期516-524,共9页
The latest geopotential model, EGM96, was employed to compute the free-air gravity anomaly, geoidal separation, the average density anomalies of the crust and the uppermost mantle, and the distribution pattern of the ... The latest geopotential model, EGM96, was employed to compute the free-air gravity anomaly, geoidal separation, the average density anomalies of the crust and the uppermost mantle, and the distribution pattern of the viscous stress exerted by mantle convection over Xinjiang and its neighboring areas. Based on these results and other data, we try to interpret the geodynamical features of the Tianshan orogen. Our research suggests that the Tianshan orogen is in a tectonic setting of compressive settling, driven by mantle convection. Under the effect of the compressive stress field, asymmetric in north-south direction, the Tianshan orogen upheaved quickly. The center of compressive stress field is in the south of the Tianshan, and the characteristic of stress field is favorable for the view point that the Tarim plat subducts beneath the Tianshan. The southern margin of the Juggar basin and the northern margin of the Tarim basin are two areas where the crust is of mass deficiency. We attribute the mass deficiency to the fact that the crust, in both the north and the south of the Tianshan is bent downwards under the compressive stress. Our research also indicates that the density distribution patterns in the deep of the eastern Tianshan are different from those in the middle and western Tianshan. It may be explained as the results from the east-west oriented distinction of the mantle convection. 展开更多
关键词 geopotential model geoidal separation viscous stress pattern mantle convection
下载PDF
Deep Mechanical Background for the Cenozoic Volcanism in the Tibetan Plateau 被引量:1
14
作者 Xiong Xiong Wang Jiye Teng Jiwen 《Journal of China University of Geosciences》 SCIE CSCD 2005年第4期334-339,共6页
The principle prerequisite for the formation of a volcano is the generation of a channel for magma transportation. There is little research on the deep mechanical mechanism for the formation of a magma transportation ... The principle prerequisite for the formation of a volcano is the generation of a channel for magma transportation. There is little research on the deep mechanical mechanism for the formation of a magma transportation channel in the Tibetan plateau. Based on the subcrustal mantle convectiongenerated stress field inversed by gravity anomalies, together with its relationship to the Cenozoic volcanism in the plateau, and the mechanism of crustal fracture formation, as well as the numerical results of the evolution of mantle convection beneath the plateau, this paper investigates the deep mechanical mechanism for the formation of a magma transportation channel in the Tibetan plateau. There are two significant extensional convection-generated stress zones beneath the plateau, in which the volcanic rocks in the central and northern parts of the plateau are distributed. The Linzizong volcanism in southern Tibet correlates the upwelling mantle flow prior to the India-Asia collision or during the early stage of the collision. The magnitude of the stress is - 100 MPa, which is the same order of force that causes crustal fractures. The evidence implies that the mantle convection-generated stress is one of the principle causes of crustal fractures, and furthermore, the formation of the magma transportation channel in the Tibetan plateau. 展开更多
关键词 mantle convection stress field Tibetan plateau VOLCANISM magma channel.
下载PDF
Models of plate tectonics with the Lattice Boltzmann Method
15
作者 Peter Mora Gabriele Morra David A.Yuen 《Artificial Intelligence in Geosciences》 2023年第1期47-58,共12页
Modern geodynamics is based on the study of a large set of models,with the variation of many parameters,whose analysis in the future will require Machine Learning to be analyzed.We introduce here for the first time ho... Modern geodynamics is based on the study of a large set of models,with the variation of many parameters,whose analysis in the future will require Machine Learning to be analyzed.We introduce here for the first time how a formulation of the Lattice Boltzmann Method capable of modeling plate tectonics,with the introduction of plastic non-linear rheology,is able to reproduce the breaking of the upper boundary layer of the convecting mantle in plates.Numerical simulation of the earth’s mantle and lithospheric plates is a challenging task for traditional methods of numerical solution to partial differential equations(PDE’s)due to the need to model sharp and large viscosity contrasts,temperature dependent viscosity and highly nonlinear rheologies.Nonlinear rheologies such as plastic or dislocation creep are important in giving mantle convection a past history.We present a thermal Lattice Boltzmann Method(LBM)as an alternative to PDE-based solutions for simulating time-dependent mantle dynamics,and demonstrate that the LBM is capable of modeling an extremely nonlinear plastic rheology.This nonlinear rheology leads to the emergence plate tectonic like behavior and history from a two layer viscosity model.These results demonstrate that the LBM offers a means to study the effect of highly nonlinear rheologies on earth and exoplanet dynamics and evolution. 展开更多
关键词 Lattice Boltzmann Method mantle convection simulation Plate tectonics simulation Nonlinear rheology Extreme plasticity
下载PDF
Linear Stability Analysis on the Influences of the Spatial Variations in Thermal Conductivity and Expansivity on the Flow Patterns of Thermal Convection with Strongly Temperature-Dependent Viscosity 被引量:1
16
作者 Arata Miyauchi Masanori Kameyama Hiroki Ichikawa 《Journal of Earth Science》 SCIE CAS CSCD 2014年第1期126-139,共14页
A series of linear stability analysis is carried out on the onset of thermal convection in the presence of spatial variations of viscosity, thermal conductivity and expansivity. We consider the temporal evolution of a... A series of linear stability analysis is carried out on the onset of thermal convection in the presence of spatial variations of viscosity, thermal conductivity and expansivity. We consider the temporal evolution of an infinitesimal perturbation superimposed to a static (motionless) and con- ductive state in a basally-heated planar layer. From the changes in flow patterns with increasing the amplitudes of temperature dependence of viscosity, we identified the transition into the "stagnant-lid" (ST) regime, where the convection occurs only beneath a thick and stagnant-lid of cold fluid at the top surface. Detailed analysis showed a significant increase of the aspect ratio of convection cells in ST regime induced by the spatial variations in thermal conductivity and/or expansivity: the horizon- tal length scale of ST convection can be enlarged by up to 50% with 10 times increase of thermal conductivity with depth. We further developed an analytical model of ST convection which success- fully reproduced the mechanism of increasing horizontal length scale of ST regime convection cells for given spatial variations in physical properties. Our findings may highlight the essential roles of the spatial variation of thermal conductivity on the convection patterns in the mantle. 展开更多
关键词 mantle convection stagnant-lid temperature-dependent viscosity pressure- dependent thermal conductivity pressure-dependent thermal expansivity linear stability analysis.
原文传递
On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics:The Effects of the Water Solubility Limit of Lower Mantle Minerals 被引量:1
17
作者 Takashi Nakagawa 《Journal of Earth Science》 SCIE CAS CSCD 2017年第4期563-577,共15页
Water is the most important component in Earth system evolution. Here, I review the current understanding of the fate of water in the mantle dynamics system based on high-pressure and temperature experiments, geochemi... Water is the most important component in Earth system evolution. Here, I review the current understanding of the fate of water in the mantle dynamics system based on high-pressure and temperature experiments, geochemical analyses, seismological and geomagnetic observations, and nu- merical modeling of both regional- and giobal-scale mantle dynamics. In addition, as a numerical ex- ample, I show that the water solubility of the deep mantle is strongly sensitive to global-scale water cir- culation in the mantle. In a numerical example shown here, water solubility maps as functions of tem- perature and pressure are extremely important for revealing the hydrous structures in both the mantle transition zone and the deep mantle. Particularly, the water solubility limit of lower mantle minerals should be not so large as ~100 ppm for the mantle transition zone to get the largest hydrous reservoir in the giobal-scale mantle dynamics system. This result is consistent with the current view of mantle water circulation provided by mineral physics, which is also found as a hydrous basaltic crust in the deep mantle and the water enhancement of the mantle transition zone simultaneously. In this paper, I also discuss some unresolved issues associated with mantle water circulation, its influence on the onset and stability of plate motion, and the requirements for developing Earth system evolution in mantle dy- namics simulations. 展开更多
关键词 numerical modeling mantle convection water cycle water solubility limit.
原文传递
Small-Scale Mineralogical Heterogeneity from Variations in Phase Assemblages in the Transition Zone and D" Layer Predicted by Convection Modelling
18
作者 Arie P van den Berg David A Yuen +1 位作者 Michael H G Jacobs Maarten V de Hoop 《Journal of Earth Science》 SCIE CAS CSCD 2011年第2期160-168,共9页
Small-scale heterogeneity in the deep mantle is concentrated in the upper-mantle transition zone (TZ), in the depth range 410-660 km and also at the bottom 250 km D" region. This encourages a more detailed investig... Small-scale heterogeneity in the deep mantle is concentrated in the upper-mantle transition zone (TZ), in the depth range 410-660 km and also at the bottom 250 km D" region. This encourages a more detailed investigation of the potential for seismic reflectivity imaging by modelling heterogeneous structures in mantle convection models including phase transitions of the TZ and D" regions. We applied finite elements with variable spacing near the boundary layers in 2-D cylindrical geometry that allow for sufficient spatial resolution. We investigated several models including an extended Boussinesq (EBA) model, focused on the D" region, and a compressible (ALA) model for the TZ region. The results for the D" region show typical lens-shaped structures of post-perovskite (PPV) embedded in the perovskite (PV) background mantle, where the thickness of the lenses, at 200-400 km, strongly depends on the Clapeyron slope of the PV-PPV transition. A second phase transition (double crossing) occurs in case the core temperature is higher than the intercept temperature Ti. Our phase-dependent rheology results in contrasting effective viscosity between PV and PPV. Our model results reveal a distinctly clear mechanical weakening of the PPV lenses with about an order of magnitude lower viscosity. The shear wave-speed distributions computed from our convection results are strongly correlated with the heterogeneous distribution of the mineral phase. Gradients in the seismic wave-speed that are the target of seismological reflectivity imaging are clearly revealed. The wave-speed results show a clear resolution of the top and bottom interfaces of the PPV lenses. Our ALA model for the TZ is based on a thermodynamical model for the magnesium end- member of an olivine-pyroxene mantle. The model predicts a much more complex distribution of mineral phases, compared to our D" results, in agreement with the greater number of mineral phases involved in the olivine-pyroxene phase diagram for the P, T conditions of the transition zone. Near cold downwelling flows representing subducting lithospheric slabs, where the local geotherm can differ by up to 1 000 K from the horizontal average, and small-scale lateral variations in the mineral phases can occur. 展开更多
关键词 mantle convection phase transition POST-PEROVSKITE mineralogical heterogeneity.
原文传递
Effects of depth-and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of large thermochemical piles of primordial material in the lower mantle of the Earth:Insights from 2-D numerical modeling
19
作者 Yang LI Zhigang ZHANG +2 位作者 Juan LI Zhidong SHI Liang ZHAO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第8期1865-1876,共12页
Thermal conductivity plays an important role in the thermochemical evolution of Earth’s mantle.Recent mineral physics studies suggest that the thermal conductivity of the mantle varies with pressure and composition,a... Thermal conductivity plays an important role in the thermochemical evolution of Earth’s mantle.Recent mineral physics studies suggest that the thermal conductivity of the mantle varies with pressure and composition,and this may play an important role in the evolution of the Earth’s mantle.Meanwhile,the rheology of the deep mantle is also supposed to be composition-dependent.However,the dynamic influences of these factors remain not well understood.In this study,we performed numerical experiments of thermochemical mantle convection in 2-D spherical annulus geometry to systematically investigate the effects of depth-and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of the large thermochemical structure of primordial material in Earth’s mantle.Our results show that increasing the depth-dependent thermal conductivity leads to a larger core-mantle boundary(CMB)heat flow and allows the formation of more stable large thermochemical piles(e.g.,Large Low Shear Velocity Provinces,LLSVPs);while decreasing the composition-dependent thermal conductivity would slightly destabilize the primordial thermochemical piles,increase the altitude of these piles and the temperature differences between the piles and the ambient mantle.If the primordial mantle material is compositionally more viscous(e.g.,20 times than that of the ambient mantle),the long-term stability of the thermochemical piles of primordial material decreases,and this destabilizing effect will be enhanced by decreasing the composition-dependent thermal conductivity.As a result,the thermochemical piles would be unstable in the core-mantle boundary region.Therefore,our study indicates that the combined effects of depth-and composition-dependent thermal conductivity and compositional viscosity ratio are pronounced to the thermochemical evolution of the mantle. 展开更多
关键词 mantle convection Thermal conductivity Core-mantle boundary heat flow Primordial mantle material LLSVPs
原文传递
Characteristics and geological significance of the stress state of the lithosphere in the Qinghai-Tibetan Plateau and its neighboring areas
20
作者 Qianwen ZHANG Ya XU +1 位作者 Wei CHU Shupeng LU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第6期1836-1855,共20页
The present-day lithospheric stress state of the Qinghai-Tibetan Plateau and neighboring areas is controlled by both the lithosphere itself and the underlying mantle.In other words,the stress is affected by the gravit... The present-day lithospheric stress state of the Qinghai-Tibetan Plateau and neighboring areas is controlled by both the lithosphere itself and the underlying mantle.In other words,the stress is affected by the gravitational potential energy(GPE)difference caused by the change in the density distribution within the lithosphere and the drag force on the base of the lithosphere caused by mantle convection.The study of the lithospheric stress state plays an important role in further understanding the dynamic background and mechanism for the evolution of the Qinghai-Tibetan Plateau.In this study,the Crust1.0 crustal density model combined with the S40RTS mantle shear wave velocity variation model was used to calculate the GPE.The EGM2008gravity field model was used to calculate the drag force from mantle convection at the base of the lithosphere.The lithospheric and joint stress fields of the two sources were obtained by solving the force balance under the thin sheet approximation.This way,we could comprehensively analyze the characteristics of the stress state within the Plateau.Six regions were classified according to the GPE stress field,mantle drag force stress field,the relative magnitude of the two stress fields,and correlation between the two stress fields and surface deformation.The lithospheric stress fields of the Tarim Basin and other stable blocks are mainly controlled by the GPE difference.The lithospheric stress field in the collision zone between the Indian Plate and the QinghaiTibetan Plateau is predominantly controlled by the deep mantle drag force.The lithospheric stress field in the interior of the Plateau is controlled by both GPE and mantle drag.The correlation between the lithospheric stress field and surface deformation at the southeast margin of the Qinghai-Tibetan Plateau is poor.It is hypothesized that the presence of lower crustal flow with lower effective viscosity leads to crust-mantle decoupling,and the mantle drag force has a weaker influence on the shallow crust,resulting in the inconsistency between the average lithospheric stress field and surface deformation. 展开更多
关键词 Qinghai-Tibetan Plateau Gravitational potential energy mantle convection Lithospheric deviatoric stress field GPS strain rate field
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部