Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has ...Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has been carried out in this paper. We introduce a time-dependent parameter F, which denotes the ratio betWeen the mantle material involved in whole mantle convection and the material of the entire mantle, and introduce a local Rayleigh number Raloc as well as two critical numbers Ra1 and Ra2. These parameters are used to describe the stability of the phase boundary between the upper and lower mantle. The result shows that the mixed mantle convection model is able to simulate the episodic tectonic evolution of the Earth.展开更多
文摘Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has been carried out in this paper. We introduce a time-dependent parameter F, which denotes the ratio betWeen the mantle material involved in whole mantle convection and the material of the entire mantle, and introduce a local Rayleigh number Raloc as well as two critical numbers Ra1 and Ra2. These parameters are used to describe the stability of the phase boundary between the upper and lower mantle. The result shows that the mixed mantle convection model is able to simulate the episodic tectonic evolution of the Earth.