1 Introduction Mafic rocks are widespread throughout the Liaodong Peninsula and vicinity,northeastern North China Craton,providing important constraints on their mantle source characteristics of individual episodes,as...1 Introduction Mafic rocks are widespread throughout the Liaodong Peninsula and vicinity,northeastern North China Craton,providing important constraints on their mantle source characteristics of individual episodes,as they have展开更多
A new method for determining the partial melting depth of mantle-derived magma and lithospheric thickness in continental regions is derived from REE geochemistry. This effective technique uses variations in the Ce/Yb ...A new method for determining the partial melting depth of mantle-derived magma and lithospheric thickness in continental regions is derived from REE geochemistry. This effective technique uses variations in the Ce/Yb and Sm/Yb ratios found in mainly volcanic rocks in continental China. The ratios change with the depth of origin consistent with the correlation between lithospheric thickness and the Ce/Yb and Sm/Yb ratios found in oceanic basalt. These ratios increase exponentially with the depth of origin, the lithospheric thickness, of a wide variety of Cenozoic volcanic basalt and Paleozoic kimberlite in the North China Craton, northeastern China continent and vicinity. This functional relationship with depth is shown in a plot of the ratios that forms a concordia curve, which is closely expressed by formulas using 8–degree polynomials. These provide a more accurate gage in measuring the lithospheric thickness than the traditional geophysical methods. When applied to volcanic rock of different ages it also reveals how the thickness has changed over time and thus, greatly aids the understanding of the tectonic history. Relations between the COcontent, mineral reactions and pressure in the upper asthenosphere beneath the base of the lithosphere appears to affect the proportions of REE in partial melts and brings about a close correlation between lithospheric thickness and the Ce/Yb and Sm/Yb ratios in mantle–derived magmatic rock. This thickness gauge, for both continental and oceanic lithosphere, provides a new approach in analyzing the lithospheric thickness in different tectonic settings and geologic times.展开更多
In the last decade there has been a considerable effort to better understand the joint evolution of mafic and ultramafic magmatic systems and their deep mantle roots,through integrated petrological and thermo-barometr...In the last decade there has been a considerable effort to better understand the joint evolution of mafic and ultramafic magmatic systems and their deep mantle roots,through integrated petrological and thermo-barometric studies.Magma generation is regarded as the result of complex processes including melting,creation of channels for melt transfer,and interaction with the wall-rocks.展开更多
Large igneous provinces(LIPs) formed by mantle superplume events have irreversibly changed their composition in the geological evolution of the Earth from high-Mg melts(during Archean and early Paleoproterozoic) t...Large igneous provinces(LIPs) formed by mantle superplume events have irreversibly changed their composition in the geological evolution of the Earth from high-Mg melts(during Archean and early Paleoproterozoic) to Phanerozoic-type geochemically enriched Fe-Ti basalts and picrites at 2.3 Ga.We propose that this upheaval could be related to the change in the source and nature of the mantle superplumes of different generations.The first generation plumes were derived from the depleted mantle,whereas the second generation(thermochemical) originated from the core-mantle boundary(CMB).This study mainly focuses on the second(Phanerozoic) type of LIPs,as exemplified by the midPaleoproterozoic Jatulian-Ludicovian LIP in the Fennoscandian Shield,the Permian-Triassic Siberian LIP,and the late Cenozoic flood basalts of Syria.The latter LIP contains mantle xenoliths represented by green and black series.These xenoliths are fragments of cooled upper margins of the mantle plume heads,above zones of adiabatic melting,and provide information about composition of the plume material and processes in the plume head.Based on the previous studies on the composition of the mantle xenoliths in within-plate basalts around the world,it is inferred that the heads of the mantle(thermochemical) plumes are made up of moderately depleted spinel peridotites(mainly lherzolites)and geochemically-enriched intergranular fluid/melt.Further,it is presumed that the plume heads intrude the mafic lower crust and reach up to the bottom of the upper crust at depths-20 km.The generation of two major types of mantle-derived magmas(alkali and tholeiitic basalts) was previously attributed to the processes related to different PT-parameters in the adiabatic melting zone whereas this study relates to the fluid regime in the plume heads.It is also suggested that a newly-formed melt can occur on different sides of a critical plane of silica undersaturation and can acquire either alkalic or tholeiitic composition depending on the concentration and composition of the fluids.The presence of melt-pockets in the peridotite matrix indicates fluid migration to the rocks of cooled upper margin of the plume head from the lower portion.This process causes secondary melting in this zone and the generation of melts of the black series and differentiated trachytic magmas.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 41430207 and 90914001)National Key Basic Research Program of China (Grant No. 2012CB416603)+1 种基金the Opening Foundation of the Peking University (Grant No. 0000010541)the Undergraduates Innovating Experimentation Project of Jilin University (Grant No. 2010C61164)
文摘1 Introduction Mafic rocks are widespread throughout the Liaodong Peninsula and vicinity,northeastern North China Craton,providing important constraints on their mantle source characteristics of individual episodes,as they have
基金supported by the Ministry of Land and Resources of China under grant No.201211095
文摘A new method for determining the partial melting depth of mantle-derived magma and lithospheric thickness in continental regions is derived from REE geochemistry. This effective technique uses variations in the Ce/Yb and Sm/Yb ratios found in mainly volcanic rocks in continental China. The ratios change with the depth of origin consistent with the correlation between lithospheric thickness and the Ce/Yb and Sm/Yb ratios found in oceanic basalt. These ratios increase exponentially with the depth of origin, the lithospheric thickness, of a wide variety of Cenozoic volcanic basalt and Paleozoic kimberlite in the North China Craton, northeastern China continent and vicinity. This functional relationship with depth is shown in a plot of the ratios that forms a concordia curve, which is closely expressed by formulas using 8–degree polynomials. These provide a more accurate gage in measuring the lithospheric thickness than the traditional geophysical methods. When applied to volcanic rock of different ages it also reveals how the thickness has changed over time and thus, greatly aids the understanding of the tectonic history. Relations between the COcontent, mineral reactions and pressure in the upper asthenosphere beneath the base of the lithosphere appears to affect the proportions of REE in partial melts and brings about a close correlation between lithospheric thickness and the Ce/Yb and Sm/Yb ratios in mantle–derived magmatic rock. This thickness gauge, for both continental and oceanic lithosphere, provides a new approach in analyzing the lithospheric thickness in different tectonic settings and geologic times.
文摘In the last decade there has been a considerable effort to better understand the joint evolution of mafic and ultramafic magmatic systems and their deep mantle roots,through integrated petrological and thermo-barometric studies.Magma generation is regarded as the result of complex processes including melting,creation of channels for melt transfer,and interaction with the wall-rocks.
基金supported by grants RFBR(projects Nos.14-0500458a and 16-05-00708)
文摘Large igneous provinces(LIPs) formed by mantle superplume events have irreversibly changed their composition in the geological evolution of the Earth from high-Mg melts(during Archean and early Paleoproterozoic) to Phanerozoic-type geochemically enriched Fe-Ti basalts and picrites at 2.3 Ga.We propose that this upheaval could be related to the change in the source and nature of the mantle superplumes of different generations.The first generation plumes were derived from the depleted mantle,whereas the second generation(thermochemical) originated from the core-mantle boundary(CMB).This study mainly focuses on the second(Phanerozoic) type of LIPs,as exemplified by the midPaleoproterozoic Jatulian-Ludicovian LIP in the Fennoscandian Shield,the Permian-Triassic Siberian LIP,and the late Cenozoic flood basalts of Syria.The latter LIP contains mantle xenoliths represented by green and black series.These xenoliths are fragments of cooled upper margins of the mantle plume heads,above zones of adiabatic melting,and provide information about composition of the plume material and processes in the plume head.Based on the previous studies on the composition of the mantle xenoliths in within-plate basalts around the world,it is inferred that the heads of the mantle(thermochemical) plumes are made up of moderately depleted spinel peridotites(mainly lherzolites)and geochemically-enriched intergranular fluid/melt.Further,it is presumed that the plume heads intrude the mafic lower crust and reach up to the bottom of the upper crust at depths-20 km.The generation of two major types of mantle-derived magmas(alkali and tholeiitic basalts) was previously attributed to the processes related to different PT-parameters in the adiabatic melting zone whereas this study relates to the fluid regime in the plume heads.It is also suggested that a newly-formed melt can occur on different sides of a critical plane of silica undersaturation and can acquire either alkalic or tholeiitic composition depending on the concentration and composition of the fluids.The presence of melt-pockets in the peridotite matrix indicates fluid migration to the rocks of cooled upper margin of the plume head from the lower portion.This process causes secondary melting in this zone and the generation of melts of the black series and differentiated trachytic magmas.