Taking a heavy-duty truck as a research platform,the changing characteristics of shifting force,shift time,and slipping work are obtained through theoretical analysis and manual shift test of a real vehicle. Based on ...Taking a heavy-duty truck as a research platform,the changing characteristics of shifting force,shift time,and slipping work are obtained through theoretical analysis and manual shift test of a real vehicle. Based on the analysis of the test results,a gear-shifting control strategy of the hydraulic automated shift control system is designed and experimentally verified on the bench. By optimizing the control parameters of high-speed switching valves,a control strategy and parameters are obtained,which can meet the requirements of dynamic performance and reliability.展开更多
Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the...Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.展开更多
In order to diagnose gear shifting process in automated manual transmission(AMT),a semi-quantitative signed directed graph(SDG)model is applied.Mathematical models are built by analysis of the power train dynamic ...In order to diagnose gear shifting process in automated manual transmission(AMT),a semi-quantitative signed directed graph(SDG)model is applied.Mathematical models are built by analysis of the power train dynamic and the gear shifting control process.The SDG model is built based on related priori knowledge.By calculating the fuzzy membership degree of each compatible passway and its possible fault source,we get the possibilities of failure for each possible fault source.We begin with the nodes with the maximum possibility of failure in order to find the failed part.The diagnosis example shows that it is feasible to use the semi-quantitative SDG model for fault diagnosis of the gear shifting process in AMT.展开更多
基金Supported by the National High Technology Engineering Program(302011)
文摘Taking a heavy-duty truck as a research platform,the changing characteristics of shifting force,shift time,and slipping work are obtained through theoretical analysis and manual shift test of a real vehicle. Based on the analysis of the test results,a gear-shifting control strategy of the hydraulic automated shift control system is designed and experimentally verified on the bench. By optimizing the control parameters of high-speed switching valves,a control strategy and parameters are obtained,which can meet the requirements of dynamic performance and reliability.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA11A223)
文摘Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.
基金Supported by the Basic Research Foundation of Beijing Institute of Technology(20130342035)
文摘In order to diagnose gear shifting process in automated manual transmission(AMT),a semi-quantitative signed directed graph(SDG)model is applied.Mathematical models are built by analysis of the power train dynamic and the gear shifting control process.The SDG model is built based on related priori knowledge.By calculating the fuzzy membership degree of each compatible passway and its possible fault source,we get the possibilities of failure for each possible fault source.We begin with the nodes with the maximum possibility of failure in order to find the failed part.The diagnosis example shows that it is feasible to use the semi-quantitative SDG model for fault diagnosis of the gear shifting process in AMT.