A fast Time Domain Integral Equation(TDIE) solver is presented for analysis of transient scattering from electrically large conducting complex objects.The numerical process of Marching-On-in-Time(MOT) method based TDI...A fast Time Domain Integral Equation(TDIE) solver is presented for analysis of transient scattering from electrically large conducting complex objects.The numerical process of Marching-On-in-Time(MOT) method based TDIE encounters high computational cost and exorbitant memory requirements.A group-style accelerated method-Plane Wave Time Domain(PWTD) algorithm,which permits rapid evaluation of transient wave field generated by temporally bandlimited sources,is employed to reduce the computational cost of MOT-based TDIE solvers.An efficient compressed storage technique for sparse matrix is adopted to decrease the enormous memory requirements of MOT.The scheme of the Multi-Level PWTD(MLPWTD)-enhanced MOT with compressed storage for sparse matrix is presented for analysis of transient scattering from electrically large complex objects in this paper.The numerical simulation results demonstrate the validity and efficiency of the presented scheme.展开更多
文摘A fast Time Domain Integral Equation(TDIE) solver is presented for analysis of transient scattering from electrically large conducting complex objects.The numerical process of Marching-On-in-Time(MOT) method based TDIE encounters high computational cost and exorbitant memory requirements.A group-style accelerated method-Plane Wave Time Domain(PWTD) algorithm,which permits rapid evaluation of transient wave field generated by temporally bandlimited sources,is employed to reduce the computational cost of MOT-based TDIE solvers.An efficient compressed storage technique for sparse matrix is adopted to decrease the enormous memory requirements of MOT.The scheme of the Multi-Level PWTD(MLPWTD)-enhanced MOT with compressed storage for sparse matrix is presented for analysis of transient scattering from electrically large complex objects in this paper.The numerical simulation results demonstrate the validity and efficiency of the presented scheme.