Increased dimensionality of the satellite data proves to be very useful for discriminating features with very close spectral matching. Present study concentrates on the retrieval of reflectance spectra from the level ...Increased dimensionality of the satellite data proves to be very useful for discriminating features with very close spectral matching. Present study concentrates on the retrieval of reflectance spectra from the level one radiometrically corrected data in Koraput district (Orissa) for the Bauxite ore. In the present study, atmospheric correction model FLAASH has been used to retrieve reflectance from the radiance data. Preprocessing of the dataset has been done before applying atmospheric correction on the dataset. Spectral subsetting of noise prone bands has been successfully done. Local destriping of the affected bands has been done using a 3*3 local mean filter. Spectral signatures of samples were derived from the processed data. Spectral signature of each sample and derived features vectors were correlated with the satellite image of the area and distribution of each feature was demarcated. Spatial abundance of each feature was used in preparation of mineral abundance map. Accuracy of the map was assessed using training sets of representative geological units. The mineral abundance mapping using the spectral analysis of the reflectance image involves the endmember collection using the N-Dimensional visualizer tool in ENVI software. Laterite, Bauxite, Iron and silica rich Aluminous laterite soil, Alluvium and Forest were selected as the end members after understanding the geology and analysis of the reflectance image. Various mapping techniques were applied to generate the final classified mineral abundance Map, Linear Spectral Unmixing, Mixture Tune Matched Filtering, Spectral Feature Fitting, Spectral Angle Mapper were the techniques used. Results have revealed the ability of Hyper spectral Remote sensing data for the identification and mapping of Hydrothermal altered products like Bauxite, Aluminous Laterite. This technology can be utilized for targeting minerals in the altered zone.展开更多
Hyperspectral remote sensing technology is widely used to detect element contents because of its multiple bands,high resolution,and abundant information.Although researchers have paid considerable attention to selecti...Hyperspectral remote sensing technology is widely used to detect element contents because of its multiple bands,high resolution,and abundant information.Although researchers have paid considerable attention to selecting the optimal bandwidth for the hyperspectral inversion of metal element contents in rocks,the influence of bandwidth on the inversion accuracy are ignored.In this study,we collected 258 rock samples in and near the Kalatage polymetallic ore concentration area in the southwestern part of Hami City,Xinjiang Uygur Autonomous Region,China and measured the ground spectra of these samples.The original spectra were resampled with different bandwidths.A Partial Least Squares Regression(PLSR)model was used to invert Cu contents of rock samples and then the influence of different bandwidths on Cu content inversion accuracy was explored.According to the results,the PLSR model obtains the highest Cu content inversion accuracy at a bandwidth of 35 nm,with the model determination coefficient(R^(2))of 0.5907.The PLSR inversion accuracy is relatively unaffected by the bandwidth within 5-80 nm,but the accuracy decreases significantly at 85 nm bandwidth(R^(2)=0.5473),and the accuracy gradually decreased at bandwidths beyond 85 nm.Hence,bandwidth has a certain impact on the inversion accuracy of Cu content in rocks using the PLSR model.This study provides an indicator argument and theoretical basis for the future design of hyperspectral sensors for rock geochemistry.展开更多
A semi-regional study was carried out in the Yaounde-Sangmelima area, a densely vegetated tropical region of southern Cameroon located in the Central Africa Fold Belt (CAFB)/Congo Craton (CC) transition zone. Towards ...A semi-regional study was carried out in the Yaounde-Sangmelima area, a densely vegetated tropical region of southern Cameroon located in the Central Africa Fold Belt (CAFB)/Congo Craton (CC) transition zone. Towards structural lineaments and predictive hydrothermal porphyry deposits mapping, an integrated analysis of Landsat-8 OLI data, aeromagnetic, geological and mineral indices maps was performed. The Remote sensing using False colour composite images involving bands combinations and Crosta method (features oriented principal components analysis) enabled the mapping of the gneisses and schists domains without a clear differentiation between the Yaounde and Mbalmayo schists;despite the reflectance anomalies evidenced NW of Akonolinga, hydrothermal alterations in the study area failed to be detected. Besides, aeromagnetics depicted a moderately fractured northern zone (the CAFB) contrasting with a high densely fractured zone (the CC, known as Ntem complex). The Ntem complex displays signatures of a meta-igneous, an intrusive complex, greenstone relics south of Sangmelima and hydrothermal activity. Indeed, CET porphyry analysis tool detected many porphyry centres. In general, the study revealed many lineaments including contacts, fractures faults zones and strike-slips. The major aeromagnetics structures are SW-NE to WSW-ENE and WNW-ESE to NW-SE while those from Landsat-8 are NE-SW, WNW-ESE, NW-SE, WSW-ENE and NW-ESE to NNW-SSE. Together, these structures depict trans-compressions or trans-tensions corresponding to a broad NE-SW strike-slips channel that affect both the CAFB and the Ntem Complex, and they control the intrusions thus confirming a pervasive hydrothermal activity within the Ntem Complex. The proximity or coincidence of these porphyry centres with some mapped Iron-Gold affiliated mineral indices and porphyry granites indicate the possible occurrence of many hydrothermal ore deposits. These results show the high probability for the Ntem complex to host porphyry deposits so they may serve to boost mineral exploration in the Yaounde-Sangmelima region and in the entire southern Cameroon as well.展开更多
通过对泥沙光学光谱特征和河口冲刷区水动力特征的研究和总结,分析了中巴地球资源卫星(China Brazil Earth Resource Satellite)CCD相机B1,B2和B3波段的太湖遥感图像,初步论证了入汇河流流速与冲刷区跨度的关系,以及遥感定量河口泥沙交...通过对泥沙光学光谱特征和河口冲刷区水动力特征的研究和总结,分析了中巴地球资源卫星(China Brazil Earth Resource Satellite)CCD相机B1,B2和B3波段的太湖遥感图像,初步论证了入汇河流流速与冲刷区跨度的关系,以及遥感定量河口泥沙交换强度和动态反映冲积扇发育方向及强度的可行性,并提出了河口泥沙交换强度的判别标志。展开更多
文摘Increased dimensionality of the satellite data proves to be very useful for discriminating features with very close spectral matching. Present study concentrates on the retrieval of reflectance spectra from the level one radiometrically corrected data in Koraput district (Orissa) for the Bauxite ore. In the present study, atmospheric correction model FLAASH has been used to retrieve reflectance from the radiance data. Preprocessing of the dataset has been done before applying atmospheric correction on the dataset. Spectral subsetting of noise prone bands has been successfully done. Local destriping of the affected bands has been done using a 3*3 local mean filter. Spectral signatures of samples were derived from the processed data. Spectral signature of each sample and derived features vectors were correlated with the satellite image of the area and distribution of each feature was demarcated. Spatial abundance of each feature was used in preparation of mineral abundance map. Accuracy of the map was assessed using training sets of representative geological units. The mineral abundance mapping using the spectral analysis of the reflectance image involves the endmember collection using the N-Dimensional visualizer tool in ENVI software. Laterite, Bauxite, Iron and silica rich Aluminous laterite soil, Alluvium and Forest were selected as the end members after understanding the geology and analysis of the reflectance image. Various mapping techniques were applied to generate the final classified mineral abundance Map, Linear Spectral Unmixing, Mixture Tune Matched Filtering, Spectral Feature Fitting, Spectral Angle Mapper were the techniques used. Results have revealed the ability of Hyper spectral Remote sensing data for the identification and mapping of Hydrothermal altered products like Bauxite, Aluminous Laterite. This technology can be utilized for targeting minerals in the altered zone.
基金supported by the Science and Technology Major Project of Xinjiang Uygur Autonomous Region,China(2021A03001-3)the Key Area Deployment Project of the Chinese Academy of Sciences(ZDRW-ZS-2020-4-30)the National Natural Science Foundation of China(U1803117).
文摘Hyperspectral remote sensing technology is widely used to detect element contents because of its multiple bands,high resolution,and abundant information.Although researchers have paid considerable attention to selecting the optimal bandwidth for the hyperspectral inversion of metal element contents in rocks,the influence of bandwidth on the inversion accuracy are ignored.In this study,we collected 258 rock samples in and near the Kalatage polymetallic ore concentration area in the southwestern part of Hami City,Xinjiang Uygur Autonomous Region,China and measured the ground spectra of these samples.The original spectra were resampled with different bandwidths.A Partial Least Squares Regression(PLSR)model was used to invert Cu contents of rock samples and then the influence of different bandwidths on Cu content inversion accuracy was explored.According to the results,the PLSR model obtains the highest Cu content inversion accuracy at a bandwidth of 35 nm,with the model determination coefficient(R^(2))of 0.5907.The PLSR inversion accuracy is relatively unaffected by the bandwidth within 5-80 nm,but the accuracy decreases significantly at 85 nm bandwidth(R^(2)=0.5473),and the accuracy gradually decreased at bandwidths beyond 85 nm.Hence,bandwidth has a certain impact on the inversion accuracy of Cu content in rocks using the PLSR model.This study provides an indicator argument and theoretical basis for the future design of hyperspectral sensors for rock geochemistry.
文摘A semi-regional study was carried out in the Yaounde-Sangmelima area, a densely vegetated tropical region of southern Cameroon located in the Central Africa Fold Belt (CAFB)/Congo Craton (CC) transition zone. Towards structural lineaments and predictive hydrothermal porphyry deposits mapping, an integrated analysis of Landsat-8 OLI data, aeromagnetic, geological and mineral indices maps was performed. The Remote sensing using False colour composite images involving bands combinations and Crosta method (features oriented principal components analysis) enabled the mapping of the gneisses and schists domains without a clear differentiation between the Yaounde and Mbalmayo schists;despite the reflectance anomalies evidenced NW of Akonolinga, hydrothermal alterations in the study area failed to be detected. Besides, aeromagnetics depicted a moderately fractured northern zone (the CAFB) contrasting with a high densely fractured zone (the CC, known as Ntem complex). The Ntem complex displays signatures of a meta-igneous, an intrusive complex, greenstone relics south of Sangmelima and hydrothermal activity. Indeed, CET porphyry analysis tool detected many porphyry centres. In general, the study revealed many lineaments including contacts, fractures faults zones and strike-slips. The major aeromagnetics structures are SW-NE to WSW-ENE and WNW-ESE to NW-SE while those from Landsat-8 are NE-SW, WNW-ESE, NW-SE, WSW-ENE and NW-ESE to NNW-SSE. Together, these structures depict trans-compressions or trans-tensions corresponding to a broad NE-SW strike-slips channel that affect both the CAFB and the Ntem Complex, and they control the intrusions thus confirming a pervasive hydrothermal activity within the Ntem Complex. The proximity or coincidence of these porphyry centres with some mapped Iron-Gold affiliated mineral indices and porphyry granites indicate the possible occurrence of many hydrothermal ore deposits. These results show the high probability for the Ntem complex to host porphyry deposits so they may serve to boost mineral exploration in the Yaounde-Sangmelima region and in the entire southern Cameroon as well.
文摘通过对泥沙光学光谱特征和河口冲刷区水动力特征的研究和总结,分析了中巴地球资源卫星(China Brazil Earth Resource Satellite)CCD相机B1,B2和B3波段的太湖遥感图像,初步论证了入汇河流流速与冲刷区跨度的关系,以及遥感定量河口泥沙交换强度和动态反映冲积扇发育方向及强度的可行性,并提出了河口泥沙交换强度的判别标志。