Genetic transformation with mature material as the explants could shorten the transgenic period and avoid seed dependence compared with genetic transformation using the epicotyl seedling stem segments as the receptor....Genetic transformation with mature material as the explants could shorten the transgenic period and avoid seed dependence compared with genetic transformation using the epicotyl seedling stem segments as the receptor. Here, we constructed an Agrobacterium tumefaciensmediated transformation for generation of marker-free transgenic plants from navel orange(Citrus sinensis Osbeck) mature stems using a CreloxP recombination system. To efficiently recover the regenerated buds from mature tissues, five recovery methods were compared: in vitro micrografting of 0.1-0.5(1-2 weeks), > 0.5 cm(3-4 weeks) and > 1 cm long lignified bud and in vitro micrografting of explants with a bud and rooting regenerated bud. The data showed that in vitro micrografting of > 1 cm long regenerated bud with expanded leaves after one month of continuous culture for lignification was the optimal solution for plant recovery from mature tissues. Transgenic plants without selectable marker genes were created from navel orange(Citrus sinensis Osbeck) tissue using a transformation vector PLI-35SPR1aCB containing a Cre/loxP system recombination together with genes encoding the selectable marker isopentenyl transferase(IPT) and an anti-bacterial peptide(PR1aCB).Using IPT positive selection, the transformation efficiency determined by PCR was 0.9%, and in total, 20 transgenic plants were obtained.Southern blotting confirmed further their transgenicity. PCR and sequencing analysis demonstrated that both the Cre and IPT genes had been successfully removed from the transgenic plants(deletion efficiency 100%). Over all, using Cre/loxP system recombination together with the IPT positive selection, marker-free transgenic plants can be recovered efficiently from mature tissues of navel orange(Citrus sinensis Osbeck), which provides a potential method for production of transgenic plants from citrus mature tissue.展开更多
We have developed a 'double T-DNA' binary vector system for generating selectable marker-free transgenic plants by Agrobacterium-mediated transformation. The 'double T-DNA' binary vector pDLBRBbarm whi...We have developed a 'double T-DNA' binary vector system for generating selectable marker-free transgenic plants by Agrobacterium-mediated transformation. The 'double T-DNA' binary vector pDLBRBbarm which carried two independent T-DNAs, one containing a selectable marker neomycin phosphotransferase (nptII) gene and the other a bargene, was constructed. Transgenic tobacco (Nicotiana tabacum L.) plants were then produced by Agrobacterium-mediated transformation with this vector. Frequency of the primary transformants co-integrated with npt II gene and bar gene was 59.2%. Segregation of two T-DNA regions was found in 3 out of 4 T-1 lines from co-transformed T-0 plants with nptII and bar PPT-resistant and kanamycin-sensitive plants were in approximate 19.5% of the T-1 plants. The result indicated that this 'double T-DNA' vector system could be a workable approach to generate transgenic plants free from selectable marker genes. Co-transformation of nptII gene and bar gene to plants with mixtures of Agrobacterium tumefaciens strains containing single T-DNA vectors was also tested. Frequency of co-transformed plants was 20.0%-47.7% and relatively low as compared with that of 'double T-DNA' vector system.展开更多
The 'double T-DNA' binary vector p13HSR which harbored two independent T-DNAs, containing hygromycin phosphotransferase gene (hpf) in one T-DNA region and three target genes (hLF, SB401, RZ10) in another T-DNA r...The 'double T-DNA' binary vector p13HSR which harbored two independent T-DNAs, containing hygromycin phosphotransferase gene (hpf) in one T-DNA region and three target genes (hLF, SB401, RZ10) in another T-DNA region, was used to generate selectable marker-free transgenic rice by Agrobacterium-mediated transformation. The regenerated plants with both the three target genes and the selectable marker gene hpt were selected for anther culture. RT-PCR analysis indicated that target genes were inserted in rice genomic DNA and successfully transcribed. It took only one year to obtain double haploid selectable marker-free transgenic plants containing the three target genes with co-transformation followed by anther culture technique, and the efficiency was 12.2%. It was also noted that one or two target genes derived from the binary vector were lost in some transgenic rice plants.展开更多
In order to obtain marker-free transgenic rice with improved disease resistance, the AP1 gene of Capsicum annuum and hygromycin-resistance gene (HPT) were cloned into the two separate T-DNA regions of the binary vec...In order to obtain marker-free transgenic rice with improved disease resistance, the AP1 gene of Capsicum annuum and hygromycin-resistance gene (HPT) were cloned into the two separate T-DNA regions of the binary vector pSB130, respectively, and introduced into the calli derived from the immature seeds of two elite japonica rice varieties, Guangling Xiangjing and Wuxiangjing 9, mediated by Agrobacterium-mediated transformation. Many cotransgenic rice lines containing both the AP1 gene and the marker gene were regenerated and the integration of both transgenes in the transgenic rice plants was confirmed by either PCR or Southern blotting technique. Several selectable marker-free transgenic rice plants were subsequently obtained from the progeny of the cotransformants, and confirmed by both PCR and Southern blotting analysis. These transgenic rice lines were tested in the field and their resistance to disease was carefully investigated, the results showed that after inoculation the resistance to either bacterial blight or sheath blight of the selected transgenic lines was improved when compared with those of wild type.展开更多
Marker-free GFP transgenic tobacco plants were constructed based on Cre/lox site-specific recombination system. A GFP gene was introduced into the tobacco genome using the Bar gene as a linked selectable marker flanke...Marker-free GFP transgenic tobacco plants were constructed based on Cre/lox site-specific recombination system. A GFP gene was introduced into the tobacco genome using the Bar gene as a linked selectable marker flanked by recombination sites in a directed orientation. The Bar gene expression box was subsequently excised from the plant genome by a strategy of Cre gene retransformation. After removal of the Cre-NPT Ⅱ locus by genetic segregation through self-cross, plants that incorporated only the GFP transgene were obtained. Transgenic tobacco plants mediated by Agrobacterium tumefaciens were obtained, which resisted herbicide Basta and GFP expressed well, then the Cre gene was subsequently introduced into 5 plants of them, respectively, by retransformation. The leaf disks from Cre transgenic plants were used to test the resistance to Basta on the medium with 8 mg L-1 of PPT. The results showed that few discs were able to regenerate normally, and the excision at 76-100% efficiency depended on individual retransformation events. Evidence for a precise recombination event was confirmed by cloning the nucleotides sequence surrounding the lox sites of the Basta sensitive plants. The result indicated that the excision event in the recombination sites was precise and conservative, without loss or alteration of any submarginal nucleotides of the recombination sites. Bar gene excised plants were selfpollinated to allow segregation of the GFP gene from the Cre-NPT Ⅱ locus. The progenies from self-pollinated plants were scored for Kan senstivity, then the segregation of GFP gene from Cre-NPT Ⅱ locus in the Kan senstive plants were confirmed by PCR analysis subsequently. Hence, constructing marker-free transgenic tobacco plants by Cre/lox sitespecific recombination system was reliable, and the strategy presented here should be applicable to other plants for the construction of marker-free transgenic plants as well.展开更多
CrylAb gene was transformed into four rice varieties, Zhejing 22, Zhejing 27, Jiahua 1 and Xiushui 63 mediated by Agrobacterium-mixture co-transformation. Rice genotype had an important effect on callus induction and ...CrylAb gene was transformed into four rice varieties, Zhejing 22, Zhejing 27, Jiahua 1 and Xiushui 63 mediated by Agrobacterium-mixture co-transformation. Rice genotype had an important effect on callus induction and transformation efficiency. Different mixtures of Agrobacterium strains (EHA105 and EHA101) contained Hpt and CrylAb genes resulted in different frequencies of resistant calli. There was no correlation between the frequency of transformants with the ratio of the Agrobacterium strain mixture contained Hpt and CrylAb genes. A total of 509 transgenic plants were obtained from the four rice varieties, and 272 T2 progenies were analyzed for CrylAb and Hpt genes. PCR analysis revealed that 412 regenerated plants were Hpt positive (80.94%), 62 plants were also CrylAb co-transformants (15.05% in total frequency), and 42 plants among the 272 T2 progenies were CrylAb positive but Hpt negative. This suggests that marker-free transgenic plants could be produced by co-transformation mediated by mixed Agrobacterium strains with the selectable marker gene and target gene Southern blot analysis of five independent marker-free T2 transgenic lines co-transformed from Zhejing 22 showed that CrylAb gene had been inserted into rice genome with a single copy. The transgenic plants showed significantly stronger resistance to lepidopteron than the non-transgenic plants under no application of insecticides against lepidopteron.展开更多
Genetically modified wheat has not been commercially utilized in agriculture largely due to regulatory hurdles associated with traditional transformation methods. Development of marker-free transgenic wheat plants wil...Genetically modified wheat has not been commercially utilized in agriculture largely due to regulatory hurdles associated with traditional transformation methods. Development of marker-free transgenic wheat plants will help to facilitate biosafety evaluation and the eventual environmental release of transgenic wheat varieties. In this study, the marker-free transgenic wheat plants previously obtained by Agrobacterium-mediated co-transformation of double T-DNAs vector were identified by fluorescence in situ hybridization(FISH) in the T1 generation, and their genetic stability and agronomic traits were analyzed in T2 and T3 generations. FISH analysis indicated that the transgene often integrated into a position at the distal region of wheat chromosomes. Furthermore, we show that the GUS transgene was stably inherited in the marker-free transgenic plants in T1 to T3 generations. No significant differences in agronomic traits or grain characteristics were observed in T3 generation, with the exception of a small variation in spike length and grains per spike in a few lines. The selection marker of bar gene was not found in the transgenic plants through T1 to T3 generations. The results from this investigation lay a solid foundation for the potential application of the marker-free transgenic wheat plants achieved through the co-transformation of double T-DNAs vector by Agrobacterium in agriculture after biosafty evaluation.展开更多
Abiotic stresses such as drought, salinity, and low temperature cause–losses in rice production worldwide. The emergence of transgenic technology has enabled improvements in the drought resistance of rice plants and ...Abiotic stresses such as drought, salinity, and low temperature cause–losses in rice production worldwide. The emergence of transgenic technology has enabled improvements in the drought resistance of rice plants and helped avert crop damage due to drought stress.Selectable marker genes conferring resistance to antibiotics or herbicides have been widely used to identify genetically modified plants. However, the use of such markers has limited the public acceptance of genetically modified organisms. Marker-free materials (i.e., those containing a single foreign gene) may be more easily accepted by the public and more likely to find common use. In the present study, we created marker-free drought-tolerant transgenic rice plants using particle bombardment. Overall, 842 T_0plants overexpressing the rice ascorbate peroxidase-coding gene OsAPX2 were generated. Eight independentmarker-free lines were identified from T_1 seedlings using the polymerase chain reaction.The molecular characteristics of these lines were examined, including the expression level,copy number, and flanking sequences of OsAPX2, in the T_2 progeny. A simulated drought test using polyethylene glycol and a drought-tolerance test of seedlings confirmed that the marker-free lines carrying OsAPX2 showed significantly improved drought tolerance in seedlings. In the field, the yield of the wild-type plant decreased by 60% under drought conditions compared with normal conditions. However, the transgenic line showed a yield loss of approximately 26%. The results demonstrated that marker-free transgenic lines significantly improved grain yield under drought-stressed conditions.展开更多
To study the efficiency of generating selectable marker-free (SMF) transgenic rice, two transformation methods were employed for four rice varieties (Wuxiangjing 9, Longtefu, Xieqingzao and Zhenshan 97). One metho...To study the efficiency of generating selectable marker-free (SMF) transgenic rice, two transformation methods were employed for four rice varieties (Wuxiangjing 9, Longtefu, Xieqingzao and Zhenshan 97). One method is by using a single twin T-DNA binary vector pYH592 in one Agrobacterium strain, which is composed of two separate T-DNA regions (one carrying an antisense Wx gene and the other carrying a HPTgene). The other one, named as two-strain/two-vector system, is by using two separate binary vectors in two separate Agrobacterium cultures. The results indicated that the average co-transformation frequencies of the antisense Wx gene and the HPT gene were 10.1% and 45.0%, respectively, for the four rice varieties. And the SMF transgenic plants selected from the offsprings of co-transformants were 55.6% and 60.0% in the two-strain/two-vector and twin T-DNA vector binary systems, respectively.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. XDJK 2018B016)the National Natural Sciences Foundation of China (Grant No. 31972393)+1 种基金he earmarked fund for China Agriculture Research System (Grant No. CARS-26)the Natural Science Foundation of Chongqing (Grant No. cstc2020jcyj-msxmX1064)。
文摘Genetic transformation with mature material as the explants could shorten the transgenic period and avoid seed dependence compared with genetic transformation using the epicotyl seedling stem segments as the receptor. Here, we constructed an Agrobacterium tumefaciensmediated transformation for generation of marker-free transgenic plants from navel orange(Citrus sinensis Osbeck) mature stems using a CreloxP recombination system. To efficiently recover the regenerated buds from mature tissues, five recovery methods were compared: in vitro micrografting of 0.1-0.5(1-2 weeks), > 0.5 cm(3-4 weeks) and > 1 cm long lignified bud and in vitro micrografting of explants with a bud and rooting regenerated bud. The data showed that in vitro micrografting of > 1 cm long regenerated bud with expanded leaves after one month of continuous culture for lignification was the optimal solution for plant recovery from mature tissues. Transgenic plants without selectable marker genes were created from navel orange(Citrus sinensis Osbeck) tissue using a transformation vector PLI-35SPR1aCB containing a Cre/loxP system recombination together with genes encoding the selectable marker isopentenyl transferase(IPT) and an anti-bacterial peptide(PR1aCB).Using IPT positive selection, the transformation efficiency determined by PCR was 0.9%, and in total, 20 transgenic plants were obtained.Southern blotting confirmed further their transgenicity. PCR and sequencing analysis demonstrated that both the Cre and IPT genes had been successfully removed from the transgenic plants(deletion efficiency 100%). Over all, using Cre/loxP system recombination together with the IPT positive selection, marker-free transgenic plants can be recovered efficiently from mature tissues of navel orange(Citrus sinensis Osbeck), which provides a potential method for production of transgenic plants from citrus mature tissue.
文摘We have developed a 'double T-DNA' binary vector system for generating selectable marker-free transgenic plants by Agrobacterium-mediated transformation. The 'double T-DNA' binary vector pDLBRBbarm which carried two independent T-DNAs, one containing a selectable marker neomycin phosphotransferase (nptII) gene and the other a bargene, was constructed. Transgenic tobacco (Nicotiana tabacum L.) plants were then produced by Agrobacterium-mediated transformation with this vector. Frequency of the primary transformants co-integrated with npt II gene and bar gene was 59.2%. Segregation of two T-DNA regions was found in 3 out of 4 T-1 lines from co-transformed T-0 plants with nptII and bar PPT-resistant and kanamycin-sensitive plants were in approximate 19.5% of the T-1 plants. The result indicated that this 'double T-DNA' vector system could be a workable approach to generate transgenic plants free from selectable marker genes. Co-transformation of nptII gene and bar gene to plants with mixtures of Agrobacterium tumefaciens strains containing single T-DNA vectors was also tested. Frequency of co-transformed plants was 20.0%-47.7% and relatively low as compared with that of 'double T-DNA' vector system.
文摘The 'double T-DNA' binary vector p13HSR which harbored two independent T-DNAs, containing hygromycin phosphotransferase gene (hpf) in one T-DNA region and three target genes (hLF, SB401, RZ10) in another T-DNA region, was used to generate selectable marker-free transgenic rice by Agrobacterium-mediated transformation. The regenerated plants with both the three target genes and the selectable marker gene hpt were selected for anther culture. RT-PCR analysis indicated that target genes were inserted in rice genomic DNA and successfully transcribed. It took only one year to obtain double haploid selectable marker-free transgenic plants containing the three target genes with co-transformation followed by anther culture technique, and the efficiency was 12.2%. It was also noted that one or two target genes derived from the binary vector were lost in some transgenic rice plants.
基金This paper is translated from its Chinese version in Scientia Agricultura Sinica.This study was supported by the Government of Jiangsu Province,China(BG2002301 and JH02-106)National Transgenic Plant R&D Project(JY03-B-10)+1 种基金National Natural Science Foundation of China(30170567)Department of Education of Jiangsu Goverment,China(K05015).
文摘In order to obtain marker-free transgenic rice with improved disease resistance, the AP1 gene of Capsicum annuum and hygromycin-resistance gene (HPT) were cloned into the two separate T-DNA regions of the binary vector pSB130, respectively, and introduced into the calli derived from the immature seeds of two elite japonica rice varieties, Guangling Xiangjing and Wuxiangjing 9, mediated by Agrobacterium-mediated transformation. Many cotransgenic rice lines containing both the AP1 gene and the marker gene were regenerated and the integration of both transgenes in the transgenic rice plants was confirmed by either PCR or Southern blotting technique. Several selectable marker-free transgenic rice plants were subsequently obtained from the progeny of the cotransformants, and confirmed by both PCR and Southern blotting analysis. These transgenic rice lines were tested in the field and their resistance to disease was carefully investigated, the results showed that after inoculation the resistance to either bacterial blight or sheath blight of the selected transgenic lines was improved when compared with those of wild type.
基金the National Natural Science Foundation of China (30200185)the Science Foundation of Committee of Education of Chongqing Municipality,China (030208)
文摘Marker-free GFP transgenic tobacco plants were constructed based on Cre/lox site-specific recombination system. A GFP gene was introduced into the tobacco genome using the Bar gene as a linked selectable marker flanked by recombination sites in a directed orientation. The Bar gene expression box was subsequently excised from the plant genome by a strategy of Cre gene retransformation. After removal of the Cre-NPT Ⅱ locus by genetic segregation through self-cross, plants that incorporated only the GFP transgene were obtained. Transgenic tobacco plants mediated by Agrobacterium tumefaciens were obtained, which resisted herbicide Basta and GFP expressed well, then the Cre gene was subsequently introduced into 5 plants of them, respectively, by retransformation. The leaf disks from Cre transgenic plants were used to test the resistance to Basta on the medium with 8 mg L-1 of PPT. The results showed that few discs were able to regenerate normally, and the excision at 76-100% efficiency depended on individual retransformation events. Evidence for a precise recombination event was confirmed by cloning the nucleotides sequence surrounding the lox sites of the Basta sensitive plants. The result indicated that the excision event in the recombination sites was precise and conservative, without loss or alteration of any submarginal nucleotides of the recombination sites. Bar gene excised plants were selfpollinated to allow segregation of the GFP gene from the Cre-NPT Ⅱ locus. The progenies from self-pollinated plants were scored for Kan senstivity, then the segregation of GFP gene from Cre-NPT Ⅱ locus in the Kan senstive plants were confirmed by PCR analysis subsequently. Hence, constructing marker-free transgenic tobacco plants by Cre/lox sitespecific recombination system was reliable, and the strategy presented here should be applicable to other plants for the construction of marker-free transgenic plants as well.
基金supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No.Z305650 and No.Y3080361)the Science and Technology Department of Zhejiang Province,China (Grant No.2004C12020)+1 种基金the National Key Technology Research & Development Program,China (Grant No.2006BAD01A01-5 and No.2008ZX08001-001)the 151 Foundation for the Talents of Zhejiang Province,China
文摘CrylAb gene was transformed into four rice varieties, Zhejing 22, Zhejing 27, Jiahua 1 and Xiushui 63 mediated by Agrobacterium-mixture co-transformation. Rice genotype had an important effect on callus induction and transformation efficiency. Different mixtures of Agrobacterium strains (EHA105 and EHA101) contained Hpt and CrylAb genes resulted in different frequencies of resistant calli. There was no correlation between the frequency of transformants with the ratio of the Agrobacterium strain mixture contained Hpt and CrylAb genes. A total of 509 transgenic plants were obtained from the four rice varieties, and 272 T2 progenies were analyzed for CrylAb and Hpt genes. PCR analysis revealed that 412 regenerated plants were Hpt positive (80.94%), 62 plants were also CrylAb co-transformants (15.05% in total frequency), and 42 plants among the 272 T2 progenies were CrylAb positive but Hpt negative. This suggests that marker-free transgenic plants could be produced by co-transformation mediated by mixed Agrobacterium strains with the selectable marker gene and target gene Southern blot analysis of five independent marker-free T2 transgenic lines co-transformed from Zhejing 22 showed that CrylAb gene had been inserted into rice genome with a single copy. The transgenic plants showed significantly stronger resistance to lepidopteron than the non-transgenic plants under no application of insecticides against lepidopteron.
基金the Ministry of Agriculture of China for the National Transgenic Research Program (2016ZX08010004)the Chinese Academy of Agricultural Sciences for the Agricultural Science and Technology Innovation Program (ASTIP-2060302-2-19)
文摘Genetically modified wheat has not been commercially utilized in agriculture largely due to regulatory hurdles associated with traditional transformation methods. Development of marker-free transgenic wheat plants will help to facilitate biosafety evaluation and the eventual environmental release of transgenic wheat varieties. In this study, the marker-free transgenic wheat plants previously obtained by Agrobacterium-mediated co-transformation of double T-DNAs vector were identified by fluorescence in situ hybridization(FISH) in the T1 generation, and their genetic stability and agronomic traits were analyzed in T2 and T3 generations. FISH analysis indicated that the transgene often integrated into a position at the distal region of wheat chromosomes. Furthermore, we show that the GUS transgene was stably inherited in the marker-free transgenic plants in T1 to T3 generations. No significant differences in agronomic traits or grain characteristics were observed in T3 generation, with the exception of a small variation in spike length and grains per spike in a few lines. The selection marker of bar gene was not found in the transgenic plants through T1 to T3 generations. The results from this investigation lay a solid foundation for the potential application of the marker-free transgenic wheat plants achieved through the co-transformation of double T-DNAs vector by Agrobacterium in agriculture after biosafty evaluation.
基金supported by the National Major Project for Developing New GM Crops (2016ZX08001-003)
文摘Abiotic stresses such as drought, salinity, and low temperature cause–losses in rice production worldwide. The emergence of transgenic technology has enabled improvements in the drought resistance of rice plants and helped avert crop damage due to drought stress.Selectable marker genes conferring resistance to antibiotics or herbicides have been widely used to identify genetically modified plants. However, the use of such markers has limited the public acceptance of genetically modified organisms. Marker-free materials (i.e., those containing a single foreign gene) may be more easily accepted by the public and more likely to find common use. In the present study, we created marker-free drought-tolerant transgenic rice plants using particle bombardment. Overall, 842 T_0plants overexpressing the rice ascorbate peroxidase-coding gene OsAPX2 were generated. Eight independentmarker-free lines were identified from T_1 seedlings using the polymerase chain reaction.The molecular characteristics of these lines were examined, including the expression level,copy number, and flanking sequences of OsAPX2, in the T_2 progeny. A simulated drought test using polyethylene glycol and a drought-tolerance test of seedlings confirmed that the marker-free lines carrying OsAPX2 showed significantly improved drought tolerance in seedlings. In the field, the yield of the wild-type plant decreased by 60% under drought conditions compared with normal conditions. However, the transgenic line showed a yield loss of approximately 26%. The results demonstrated that marker-free transgenic lines significantly improved grain yield under drought-stressed conditions.
基金supported by the National Transgenic Research Project (Grant Nos. 2008ZX08001-006 and 2008ZX08010-002)the National Natural Science Foundation (Grant No. 30770131)+1 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-07-0736)the Jiangsu Province Government (Grant Nos. BK2007510, 06KJA21018 and K05015) of China
文摘To study the efficiency of generating selectable marker-free (SMF) transgenic rice, two transformation methods were employed for four rice varieties (Wuxiangjing 9, Longtefu, Xieqingzao and Zhenshan 97). One method is by using a single twin T-DNA binary vector pYH592 in one Agrobacterium strain, which is composed of two separate T-DNA regions (one carrying an antisense Wx gene and the other carrying a HPTgene). The other one, named as two-strain/two-vector system, is by using two separate binary vectors in two separate Agrobacterium cultures. The results indicated that the average co-transformation frequencies of the antisense Wx gene and the HPT gene were 10.1% and 45.0%, respectively, for the four rice varieties. And the SMF transgenic plants selected from the offsprings of co-transformants were 55.6% and 60.0% in the two-strain/two-vector and twin T-DNA vector binary systems, respectively.