Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations...Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.展开更多
Mean-variance portfolio optimization models are sensitive to uncertainty in risk-return estimates,which may result in poor out-of-sample performance.In particular,the estimates may suffer when the number of assets con...Mean-variance portfolio optimization models are sensitive to uncertainty in risk-return estimates,which may result in poor out-of-sample performance.In particular,the estimates may suffer when the number of assets considered is high and the length of the return time series is not sufficiently long.This is precisely the case in the cryptocur-rency market,where there are hundreds of crypto assets that have been traded for a few years.We propose enhancing the mean-variance(MV)model with a pre-selection stage that uses a prototype-based clustering algorithm to reduce the number of crypto assets considered at each investment period.In the pre-selection stage,we run a prototype-based clustering algorithm where the assets are described by variables representing the profit-risk duality.The prototypes of the clustering partition are auto-matically examined and the one that best suits our risk-aversion preference is selected.We then run the MV portfolio optimization with the crypto assets of the selected cluster.The proposed approach is tested for a period of 17 months in the whole cryp-tocurrency market and two selections of the cryptocurrencies with the higher market capitalization(175 and 250 cryptos).We compare the results against three methods applied to the whole market:classic MV,risk parity,and hierarchical risk parity methods.We also compare our results with those from investing in the market index CCI30.The simulation results generally favor our proposal in terms of profit and risk-profit financial indicators.This result reaffirms the convenience of using machine learning methods to guide financial investments in complex and highly-volatile environments such as the cryptocurrency market.展开更多
In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump ...In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump intensity was introduced to the existing discrete microstructure model to denote large price fluctuations. The nonparametric method of LEE was used for detecting jumps. Further, the extended Kalman filter and the maximum likelihood method were applied to discrete microstructure modeling and the estimation of two market potential variables: market excess demand and liquidity. At last, based on the estimated variables, an assets allocation strategy using evolutionary algorithm was designed to control the weight of each asset dynamically. Case studies on IBM Stock show that jumps with variable intensity are detected successfully, and the assets allocation strategy may effectively keep the total assets growth or prevent assets loss at the stochastic financial market.展开更多
With maturing deregulated environment for electricity market, cost of transmission congestion becomes a major issue for power system operation. Uniform Marginal Price and Locational Marginal Price (LMP) are the two pr...With maturing deregulated environment for electricity market, cost of transmission congestion becomes a major issue for power system operation. Uniform Marginal Price and Locational Marginal Price (LMP) are the two practical pricing schemes on energy pricing and congestion cost allocation, which are based on different mechanisms. In this paper, these two pricing schemes are introduced in detail respectively. Also, the modified IEEE-14-bus system is used as a test system to calculate the allocated congestion cost by using these two pricing schemes.展开更多
Promotion is an essential element in the marketing mix. It is used by businesses to inform, influence and persuade customers to adopt the products and services they offer. Without promotion, business would be stagnant...Promotion is an essential element in the marketing mix. It is used by businesses to inform, influence and persuade customers to adopt the products and services they offer. Without promotion, business would be stagnant and lack substantial growth because the brands would have low visibility in the market. Moreover, today’s vast and assorted markets comprise of customers with different needs and varied behavior. So it is rarely possible for companies to satisfy all customers by treating them alike. Thus there arises a need to divide the market into segments having customers with similar traits/characteristics. After identifying appropriate market segments, firms can design differentiated promotional campaigns for each segment. At the same time there can be a mass market promotional campaign that reaches different segments with a fixed spectrum. Also since promotional effort resources are limited, one must use them judiciously. In this paper, we formulate mathematical programming problem under repeat purchase scenario, which optimally allocates mass promotional effort resources and differentiated promotional effort resources across the segments dynamically in order to maximize the overall sales obtained from multiple products of a product line under budgetary and minimum sales aspiration level constraint on each product under consideration in each segment. The planning horizon is divided into multi periods, the adoption pattern of each product in each segment is observed in every subinterval and accordingly promotional effort allocations are determined for the next period till we reach the end of planning period. The optimization model has been further extended to incorporate minimum aspiration level constraints on total sales for each product under consideration from all the segments taken together. The non linear programming problem so formulated is solved using differential evolution approach. A numerical example has been discussed to illustrate applicability of the model.展开更多
It has been widely accepted that auctioning which is the pricing approach with minimal information requirement is a proper tool to manage scare network resources. Previous works focus on Vickrey auction which is incen...It has been widely accepted that auctioning which is the pricing approach with minimal information requirement is a proper tool to manage scare network resources. Previous works focus on Vickrey auction which is incentive compatible in classic auction theory. In the beginning of this letter, the faults of the most representative auction-based mechanisms are discussed. And then a new method called Uniform-Price Auction (UPA), which has the simplest auction rule is proposed and its incentive compatibility in the network environment is also proved. Finally, the basic mode is extended to support applications which require minimum bandwidth guarantees for a given time period by introducing derivative market, and a market mechanism for network resource allocation which is predictable, riskless, and simple for end-users is completed.展开更多
Congestion management in an electricity market is introduced in this paper and a new method of allocating congestion cost to transactions is proposed. The proposed method is a two-step process, in which the total cong...Congestion management in an electricity market is introduced in this paper and a new method of allocating congestion cost to transactions is proposed. The proposed method is a two-step process, in which the total congestion cost is firstly allocated to congested facilities and then to each transaction involved. The cost of relieving a congested facility allocated to each transaction is proportional to the power flow change on the congested facility caused by the transaction. The more the power flow change is on the congested facility caused by the transaction, the deeper the degree of involvement by the transaction. Therefore, cutting down the magnitudes of such transactions contributes to relieving congestion. Test results on a 5-bus system indicate that the proposed method can reflect reasonably the degree of involvement by each transaction in the congestion and provide correct price signals contributing to relieving congestion.展开更多
To efficiently utilize the limited computational resource in real-time sensor networks, this paper focuses on the challenge of computational resource allocation in sensor networks and provides a solution with the meth...To efficiently utilize the limited computational resource in real-time sensor networks, this paper focuses on the challenge of computational resource allocation in sensor networks and provides a solution with the method of economics. It designs a microeconomic system in which the applications distribute their computational resource consumption across sensor networks by virtue of mobile agent. Further, it proposes the market-based computational resource allocation policy named MCRA which satisfies the uniform consumption of computational energy in network and the optimal division of the single computational capacity for multiple tasks. The simulation in the scenario of target tracing demonstrates that MCRA realizes an efficient allocation of computational resources according to the priority of tasks, achieves the superior allocation performance and equilibrium performance compared to traditional allocation policies, and ultimately prolongs the system lifetime.展开更多
One of the key elements influencing the performance of a carbon trading system, are the methods of allocating the initial CO2 emissions. This paper tries to use a quantitative description method to analyze the influen...One of the key elements influencing the performance of a carbon trading system, are the methods of allocating the initial CO2 emissions. This paper tries to use a quantitative description method to analyze the influence of the different allocation methods on the level of CO2 emissions based on the seven pilot trading markets from 2009 to 2013 in China. The results show that different methods bring about various degrees of impacts, through direct and indirect constraint mechanism, influence the CO2 emission cut finally. Although due to the complexity of the direct and indirect constraint mechanism, attempting to compare the effects of different allocation methods is difficult by using the data of carbon emission cut from seven pilot markets in China, the paper shows that the allowance allocation methods, through the constraints imposed on enterprises, significantly reduce regional carbon emissions.展开更多
基金supported by National Natural Science Foundation of China(U2066209)。
文摘Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.
基金supported by the European Union’s H2020 Coordination and Support Actions CA19130 under Grant Agreement Period 2.
文摘Mean-variance portfolio optimization models are sensitive to uncertainty in risk-return estimates,which may result in poor out-of-sample performance.In particular,the estimates may suffer when the number of assets considered is high and the length of the return time series is not sufficiently long.This is precisely the case in the cryptocur-rency market,where there are hundreds of crypto assets that have been traded for a few years.We propose enhancing the mean-variance(MV)model with a pre-selection stage that uses a prototype-based clustering algorithm to reduce the number of crypto assets considered at each investment period.In the pre-selection stage,we run a prototype-based clustering algorithm where the assets are described by variables representing the profit-risk duality.The prototypes of the clustering partition are auto-matically examined and the one that best suits our risk-aversion preference is selected.We then run the MV portfolio optimization with the crypto assets of the selected cluster.The proposed approach is tested for a period of 17 months in the whole cryp-tocurrency market and two selections of the cryptocurrencies with the higher market capitalization(175 and 250 cryptos).We compare the results against three methods applied to the whole market:classic MV,risk parity,and hierarchical risk parity methods.We also compare our results with those from investing in the market index CCI30.The simulation results generally favor our proposal in terms of profit and risk-profit financial indicators.This result reaffirms the convenience of using machine learning methods to guide financial investments in complex and highly-volatile environments such as the cryptocurrency market.
基金Projects(71271215,71221061) supported by the National Natural Science Foundation of ChinaProject(2011DFA10440) supported by the International Science&Technology Cooperation Program of ChinaProject(CX2012B067) supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump intensity was introduced to the existing discrete microstructure model to denote large price fluctuations. The nonparametric method of LEE was used for detecting jumps. Further, the extended Kalman filter and the maximum likelihood method were applied to discrete microstructure modeling and the estimation of two market potential variables: market excess demand and liquidity. At last, based on the estimated variables, an assets allocation strategy using evolutionary algorithm was designed to control the weight of each asset dynamically. Case studies on IBM Stock show that jumps with variable intensity are detected successfully, and the assets allocation strategy may effectively keep the total assets growth or prevent assets loss at the stochastic financial market.
文摘With maturing deregulated environment for electricity market, cost of transmission congestion becomes a major issue for power system operation. Uniform Marginal Price and Locational Marginal Price (LMP) are the two practical pricing schemes on energy pricing and congestion cost allocation, which are based on different mechanisms. In this paper, these two pricing schemes are introduced in detail respectively. Also, the modified IEEE-14-bus system is used as a test system to calculate the allocated congestion cost by using these two pricing schemes.
基金This work is supported by the 863 High-Tcch Project (No. 2004AA104340), the National Natural Science Foundation of China (No. 60173026) and SEC E-Institute: Shanghai High Institutions Grid (No. 200301-1).
文摘Promotion is an essential element in the marketing mix. It is used by businesses to inform, influence and persuade customers to adopt the products and services they offer. Without promotion, business would be stagnant and lack substantial growth because the brands would have low visibility in the market. Moreover, today’s vast and assorted markets comprise of customers with different needs and varied behavior. So it is rarely possible for companies to satisfy all customers by treating them alike. Thus there arises a need to divide the market into segments having customers with similar traits/characteristics. After identifying appropriate market segments, firms can design differentiated promotional campaigns for each segment. At the same time there can be a mass market promotional campaign that reaches different segments with a fixed spectrum. Also since promotional effort resources are limited, one must use them judiciously. In this paper, we formulate mathematical programming problem under repeat purchase scenario, which optimally allocates mass promotional effort resources and differentiated promotional effort resources across the segments dynamically in order to maximize the overall sales obtained from multiple products of a product line under budgetary and minimum sales aspiration level constraint on each product under consideration in each segment. The planning horizon is divided into multi periods, the adoption pattern of each product in each segment is observed in every subinterval and accordingly promotional effort allocations are determined for the next period till we reach the end of planning period. The optimization model has been further extended to incorporate minimum aspiration level constraints on total sales for each product under consideration from all the segments taken together. The non linear programming problem so formulated is solved using differential evolution approach. A numerical example has been discussed to illustrate applicability of the model.
基金Supported by Hubei Provincial Foundation for Natural Science under Contract 99J041 and 2001ABB104
文摘It has been widely accepted that auctioning which is the pricing approach with minimal information requirement is a proper tool to manage scare network resources. Previous works focus on Vickrey auction which is incentive compatible in classic auction theory. In the beginning of this letter, the faults of the most representative auction-based mechanisms are discussed. And then a new method called Uniform-Price Auction (UPA), which has the simplest auction rule is proposed and its incentive compatibility in the network environment is also proved. Finally, the basic mode is extended to support applications which require minimum bandwidth guarantees for a given time period by introducing derivative market, and a market mechanism for network resource allocation which is predictable, riskless, and simple for end-users is completed.
文摘Congestion management in an electricity market is introduced in this paper and a new method of allocating congestion cost to transactions is proposed. The proposed method is a two-step process, in which the total congestion cost is firstly allocated to congested facilities and then to each transaction involved. The cost of relieving a congested facility allocated to each transaction is proportional to the power flow change on the congested facility caused by the transaction. The more the power flow change is on the congested facility caused by the transaction, the deeper the degree of involvement by the transaction. Therefore, cutting down the magnitudes of such transactions contributes to relieving congestion. Test results on a 5-bus system indicate that the proposed method can reflect reasonably the degree of involvement by each transaction in the congestion and provide correct price signals contributing to relieving congestion.
文摘To efficiently utilize the limited computational resource in real-time sensor networks, this paper focuses on the challenge of computational resource allocation in sensor networks and provides a solution with the method of economics. It designs a microeconomic system in which the applications distribute their computational resource consumption across sensor networks by virtue of mobile agent. Further, it proposes the market-based computational resource allocation policy named MCRA which satisfies the uniform consumption of computational energy in network and the optimal division of the single computational capacity for multiple tasks. The simulation in the scenario of target tracing demonstrates that MCRA realizes an efficient allocation of computational resources according to the priority of tasks, achieves the superior allocation performance and equilibrium performance compared to traditional allocation policies, and ultimately prolongs the system lifetime.
文摘One of the key elements influencing the performance of a carbon trading system, are the methods of allocating the initial CO2 emissions. This paper tries to use a quantitative description method to analyze the influence of the different allocation methods on the level of CO2 emissions based on the seven pilot trading markets from 2009 to 2013 in China. The results show that different methods bring about various degrees of impacts, through direct and indirect constraint mechanism, influence the CO2 emission cut finally. Although due to the complexity of the direct and indirect constraint mechanism, attempting to compare the effects of different allocation methods is difficult by using the data of carbon emission cut from seven pilot markets in China, the paper shows that the allowance allocation methods, through the constraints imposed on enterprises, significantly reduce regional carbon emissions.