期刊文献+
共找到924篇文章
< 1 2 47 >
每页显示 20 50 100
Modeling and Design of Real-Time Pricing Systems Based on Markov Decision Processes 被引量:4
1
作者 Koichi Kobayashi Ichiro Maruta +1 位作者 Kazunori Sakurama Shun-ichi Azuma 《Applied Mathematics》 2014年第10期1485-1495,共11页
A real-time pricing system of electricity is a system that charges different electricity prices for different hours of the day and for different days, and is effective for reducing the peak and flattening the load cur... A real-time pricing system of electricity is a system that charges different electricity prices for different hours of the day and for different days, and is effective for reducing the peak and flattening the load curve. In this paper, using a Markov decision process (MDP), we propose a modeling method and an optimal control method for real-time pricing systems. First, the outline of real-time pricing systems is explained. Next, a model of a set of customers is derived as a multi-agent MDP. Furthermore, the optimal control problem is formulated, and is reduced to a quadratic programming problem. Finally, a numerical simulation is presented. 展开更多
关键词 markov decision process OPTIMAL Control REAL-TIME PRICING System
下载PDF
Robust analysis of discounted Markov decision processes with uncertain transition probabilities 被引量:2
2
作者 LOU Zhen-kai HOU Fu-jun LOU Xu-ming 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2020年第4期417-436,共20页
Optimal policies in Markov decision problems may be quite sensitive with regard to transition probabilities.In practice,some transition probabilities may be uncertain.The goals of the present study are to find the rob... Optimal policies in Markov decision problems may be quite sensitive with regard to transition probabilities.In practice,some transition probabilities may be uncertain.The goals of the present study are to find the robust range for a certain optimal policy and to obtain value intervals of exact transition probabilities.Our research yields powerful contributions for Markov decision processes(MDPs)with uncertain transition probabilities.We first propose a method for estimating unknown transition probabilities based on maximum likelihood.Since the estimation may be far from accurate,and the highest expected total reward of the MDP may be sensitive to these transition probabilities,we analyze the robustness of an optimal policy and propose an approach for robust analysis.After giving the definition of a robust optimal policy with uncertain transition probabilities represented as sets of numbers,we formulate a model to obtain the optimal policy.Finally,we define the value intervals of the exact transition probabilities and construct models to determine the lower and upper bounds.Numerical examples are given to show the practicability of our methods. 展开更多
关键词 markov decision processes uncertain transition probabilities robustness and sensitivity robust optimal policy value interval
下载PDF
Variance minimization for continuous-time Markov decision processes: two approaches 被引量:1
3
作者 ZHU Quan-xin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第4期400-410,共11页
This paper studies the limit average variance criterion for continuous-time Markov decision processes in Polish spaces. Based on two approaches, this paper proves not only the existence of solutions to the variance mi... This paper studies the limit average variance criterion for continuous-time Markov decision processes in Polish spaces. Based on two approaches, this paper proves not only the existence of solutions to the variance minimization optimality equation and the existence of a variance minimal policy that is canonical, but also the existence of solutions to the two variance minimization optimality inequalities and the existence of a variance minimal policy which may not be canonical. An example is given to illustrate all of our conditions. 展开更多
关键词 Continuous-time markov decision process Polish space variance minimization optimality equation optimality inequality.
下载PDF
Variance Optimization for Continuous-Time Markov Decision Processes
4
作者 Yaqing Fu 《Open Journal of Statistics》 2019年第2期181-195,共15页
This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space... This paper considers the variance optimization problem of average reward in continuous-time Markov decision process (MDP). It is assumed that the state space is countable and the action space is Borel measurable space. The main purpose of this paper is to find the policy with the minimal variance in the deterministic stationary policy space. Unlike the traditional Markov decision process, the cost function in the variance criterion will be affected by future actions. To this end, we convert the variance minimization problem into a standard (MDP) by introducing a concept called pseudo-variance. Further, by giving the policy iterative algorithm of pseudo-variance optimization problem, the optimal policy of the original variance optimization problem is derived, and a sufficient condition for the variance optimal policy is given. Finally, we use an example to illustrate the conclusion of this paper. 展开更多
关键词 CONTINUOUS-TIME markov decision process Variance OPTIMALITY of Average REWARD Optimal POLICY of Variance POLICY ITERATION
下载PDF
Adaptive Strategies for Accelerating the Convergence of Average Cost Markov Decision Processes Using a Moving Average Digital Filter
5
作者 Edilson F. Arruda Fabrício Ourique 《American Journal of Operations Research》 2013年第6期514-520,共7页
This paper proposes a technique to accelerate the convergence of the value iteration algorithm applied to discrete average cost Markov decision processes. An adaptive partial information value iteration algorithm is p... This paper proposes a technique to accelerate the convergence of the value iteration algorithm applied to discrete average cost Markov decision processes. An adaptive partial information value iteration algorithm is proposed that updates an increasingly accurate approximate version of the original problem with a view to saving computations at the early iterations, when one is typically far from the optimal solution. The proposed algorithm is compared to classical value iteration for a broad set of adaptive parameters and the results suggest that significant computational savings can be obtained, while also ensuring a robust performance with respect to the parameters. 展开更多
关键词 AVERAGE Cost markov decision processes Value ITERATION Computational EFFORT GRADIENT
下载PDF
Conditional Value-at-Risk for Random Immediate Reward Variables in Markov Decision Processes
6
作者 Masayuki Kageyama Takayuki Fujii +1 位作者 Koji Kanefuji Hiroe Tsubaki 《American Journal of Computational Mathematics》 2011年第3期183-188,共6页
We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional va... We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional value-at-risk for random immediate reward variables in Markov decision processes, under whose risk measure criteria the risk-optimal policies are characterized by the optimality equations for the discounted or average case. As an application, the inventory models are considered. 展开更多
关键词 markov decision processes CONDITIONAL VALUE-AT-RISK Risk Optimal Policy INVENTORY Model
下载PDF
Seeking for Passenger under Dynamic Prices: A Markov Decision Process Approach
7
作者 Qianrong Shen 《Journal of Computer and Communications》 2021年第12期80-97,共18页
In recent years, ride-on-demand (RoD) services such as Uber and Didi are becoming increasingly popular. Different from traditional taxi services, RoD services adopt dynamic pricing mechanisms to manipulate the supply ... In recent years, ride-on-demand (RoD) services such as Uber and Didi are becoming increasingly popular. Different from traditional taxi services, RoD services adopt dynamic pricing mechanisms to manipulate the supply and demand on the road, and such mechanisms improve service capacity and quality. Seeking route recommendation has been widely studied in taxi service. In RoD services, the dynamic price is a new and accurate indicator that represents the supply and demand condition, but it is yet rarely studied in providing clues for drivers to seek for passengers. In this paper, we proposed to incorporate the impacts of dynamic prices as a key factor in recommending seeking routes to drivers. We first showed the importance and need to do that by analyzing real service data. We then designed a Markov Decision Process (MDP) model based on passenger order and car GPS trajectories datasets, and took into account dynamic prices in designing rewards. Results show that our model not only guides drivers to locations with higher prices, but also significantly improves driver revenue. Compared with things with the drivers before using the model, the maximum yield after using it can be increased to 28%. 展开更多
关键词 Ride-on-Demand Service markov decision process Dynamic Pricing Taxi Services Route Recommendation
下载PDF
Heterogeneous Network Selection Optimization Algorithm Based on a Markov Decision Model 被引量:8
8
作者 Jianli Xie Wenjuan Gao Cuiran Li 《China Communications》 SCIE CSCD 2020年第2期40-53,共14页
A network selection optimization algorithm based on the Markov decision process(MDP)is proposed so that mobile terminals can always connect to the best wireless network in a heterogeneous network environment.Consideri... A network selection optimization algorithm based on the Markov decision process(MDP)is proposed so that mobile terminals can always connect to the best wireless network in a heterogeneous network environment.Considering the different types of service requirements,the MDP model and its reward function are constructed based on the quality of service(QoS)attribute parameters of the mobile users,and the network attribute weights are calculated by using the analytic hierarchy process(AHP).The network handoff decision condition is designed according to the different types of user services and the time-varying characteristics of the network,and the MDP model is solved by using the genetic algorithm and simulated annealing(GA-SA),thus,users can seamlessly switch to the network with the best long-term expected reward value.Simulation results show that the proposed algorithm has good convergence performance,and can guarantee that users with different service types will obtain satisfactory expected total reward values and have low numbers of network handoffs. 展开更多
关键词 heterogeneous wireless networks markov decision process reward function genetic algorithm simulated annealing
下载PDF
折扣与无折扣MDPs:一个基于SARSA(λ)算法的实例分析
9
作者 陈焕文 谢丽娟 《计算机工程与应用》 CSCD 北大核心 2002年第9期86-88,共3页
分析了折扣激励学习存在的问题,对MDPs的SARSA(λ)算法进行了折扣的比较实验分析,讨论了平均奖赏常量对无折扣SARSA(()算法的影响。
关键词 机器学习 激励学习 SARSA(λ)算法 实例分析 mdps
下载PDF
An Optimized Vertical Handoff Algorithm Based on Markov Process in Vehicle Heterogeneous Network 被引量:4
10
作者 MA Bin DENG Hong +1 位作者 XIE Xianzhong LIAO Xiaofeng 《China Communications》 SCIE CSCD 2015年第4期106-116,共11页
In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm bas... In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect. 展开更多
关键词 vehicle heterogeneous network vertical handoff markov process fuzzy logic multi-attribute decision
下载PDF
Performance Potential-based Neuro-dynamic Programming for SMDPs 被引量:10
11
作者 TANGHao YUANJi-Bin LUYang CHENGWen-Juan 《自动化学报》 EI CSCD 北大核心 2005年第4期642-645,共4页
An alpha-uniformized Markov chain is defined by the concept of equivalent infinitesimalgenerator for a semi-Markov decision process (SMDP) with both average- and discounted-criteria.According to the relations of their... An alpha-uniformized Markov chain is defined by the concept of equivalent infinitesimalgenerator for a semi-Markov decision process (SMDP) with both average- and discounted-criteria.According to the relations of their performance measures and performance potentials, the optimiza-tion of an SMDP can be realized by simulating the chain. For the critic model of neuro-dynamicprogramming (NDP), a neuro-policy iteration (NPI) algorithm is presented, and the performanceerror bound is shown as there are approximate error and improvement error in each iteration step.The obtained results may be extended to Markov systems, and have much applicability. Finally, anumerical example is provided. 展开更多
关键词 决议过程 Smdp 执行电位 神经动力学 markov 优化设计
下载PDF
Probabilistic Analysis and Multicriteria Decision for Machine Assignment Problem with General Service Times
12
作者 Wang, Jing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1994年第1期53-61,共9页
In this paper we carried out a probabilistic analysis for a machine repair system with a general service-time distribution by means of generalized Markov renewal processes. Some formulas for the steady-state performan... In this paper we carried out a probabilistic analysis for a machine repair system with a general service-time distribution by means of generalized Markov renewal processes. Some formulas for the steady-state performance measures. such as the distribution of queue sizes, average queue length, degree of repairman utilization and so on. are then derived. Finally, the machine repair model and a multiple critcria decision-making method are applied to study machine assignment problem with a general service-time distribution to determine the optimum number of machines being serviced by one repairman. 展开更多
关键词 Machine assignment problem Queueing model Multicriteria decision markov processes
下载PDF
A dynamical neural network approach for distributionally robust chance-constrained Markov decision process 被引量:1
13
作者 Tian Xia Jia Liu Zhiping Chen 《Science China Mathematics》 SCIE CSCD 2024年第6期1395-1418,共24页
In this paper,we study the distributionally robust joint chance-constrained Markov decision process.Utilizing the logarithmic transformation technique,we derive its deterministic reformulation with bi-convex terms und... In this paper,we study the distributionally robust joint chance-constrained Markov decision process.Utilizing the logarithmic transformation technique,we derive its deterministic reformulation with bi-convex terms under the moment-based uncertainty set.To cope with the non-convexity and improve the robustness of the solution,we propose a dynamical neural network approach to solve the reformulated optimization problem.Numerical results on a machine replacement problem demonstrate the efficiency of the proposed dynamical neural network approach when compared with the sequential convex approximation approach. 展开更多
关键词 markov decision process chance constraints distributionally robust optimization moment-based ambiguity set dynamical neural network
原文传递
A Novel Dynamic Decision Model in 2-player Symmetric Repeated Games
14
作者 Liu Weibing Wang Xianjia Wang Guangmin 《Engineering Sciences》 EI 2008年第1期43-46,共4页
Considering the dynamic character of repeated games and Markov process, this paper presented a novel dynamic decision model for symmetric repeated games. In this model, players' actions were mapped to a Markov decisi... Considering the dynamic character of repeated games and Markov process, this paper presented a novel dynamic decision model for symmetric repeated games. In this model, players' actions were mapped to a Markov decision process with payoffs, and the Boltzmann distribution was intousluced. Our dynamic model is different from others' , we used this dynamic model to study the iterated prisoner' s dilemma, and the results show that this decision model can successfully be used in symmetric repeated games and has an ability of adaptive learning. 展开更多
关键词 game theory evolutionary game repeated game markov process decision model
下载PDF
基于MDP的无人机避撞航迹规划研究
15
作者 阚煌 辛长范 +3 位作者 谭哲卿 高鑫 史铭姗 张谦 《计算机测量与控制》 2024年第6期292-298,共7页
无人机(UAV)进行避撞前提下的目标搜索航迹规划是指在复杂且众多的环境障碍约束中通过合理规划飞行路径,以更快、更高效的形式找到目标;研究了无障碍环境条件下有限位置马尔科夫移动的规律,构建了相应的马尔科夫移动分布模型;在借鉴搜... 无人机(UAV)进行避撞前提下的目标搜索航迹规划是指在复杂且众多的环境障碍约束中通过合理规划飞行路径,以更快、更高效的形式找到目标;研究了无障碍环境条件下有限位置马尔科夫移动的规律,构建了相应的马尔科夫移动分布模型;在借鉴搜索系统航迹规划的前沿研究成果之上,结合马尔科夫决策过程理论(MDP),引入了负奖励机制对Q-Learning策略算法迭代;类比“风险井”的可视化方式将障碍威胁区域对无人机的负奖励作用直观地呈现出来,构建了复杂障碍约束环境下单无人机目标搜索航迹规划模型,并进行仿真实验证明该算法可行,对航迹规划算法的设计具有一定的参考意义。 展开更多
关键词 无人机 航迹规划 避撞 静态目标搜索 马尔科夫决策过程(mdp) 风险井
下载PDF
Driving force planning in shield tunneling based on Markov decision processes 被引量:7
16
作者 HU XiangTao HUANG YongAn +1 位作者 YIN ZhouPing XIONG YouLun 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第4期1022-1030,共9页
In shield tunneling, the control system needs very reliable capability of deviation rectifying in order to ensure that the tunnel trajectory meets the permissible criterion. To this goal, we present an approach that a... In shield tunneling, the control system needs very reliable capability of deviation rectifying in order to ensure that the tunnel trajectory meets the permissible criterion. To this goal, we present an approach that adopts Markov decision process (MDP) theory to plan the driving force with explicit representation of the uncertainty during excavation. The shield attitudes of possi- ble world and driving forces during excavation are scattered as a state set and an action set, respectively. In particular, an evaluation function is proposed with consideration of the stability of driving force and the deviation of shield attitude. Unlike the deterministic approach, the driving forces based on MDP model lead to an uncertain effect and the attitude is known only with an imprecise probability. We consider the case that the transition probability varies in a given domain estimated by field data, and discuss the optimal policy based on the interval arithmetic. The validity of the approach is discussed by comparing the driving force planning with the actual operating data from the field records of Line 9 in Tianjin. It is proved that the MDP model is reasonable enough to predict the driving force for automatic deviation rectifying. 展开更多
关键词 shield tunneling markov decision process automatic deviation rectifying interval arithmetic driving force planning
原文传递
First passage Markov decision processes with constraints and varying discount factors 被引量:2
17
作者 Xiao WU Xiaolong ZOU Xianping GUO 《Frontiers of Mathematics in China》 SCIE CSCD 2015年第4期1005-1023,共19页
This paper focuses on the constrained optimality problem (COP) of first passage discrete-time Markov decision processes (DTMDPs) in denumerable state and compact Borel action spaces with multi-constraints, state-d... This paper focuses on the constrained optimality problem (COP) of first passage discrete-time Markov decision processes (DTMDPs) in denumerable state and compact Borel action spaces with multi-constraints, state-dependent discount factors, and possibly unbounded costs. By means of the properties of a so-called occupation measure of a policy, we show that the constrained optimality problem is equivalent to an (infinite-dimensional) linear programming on the set of occupation measures with some constraints, and thus prove the existence of an optimal policy under suitable conditions. Furthermore, using the equivalence between the constrained optimality problem and the linear programming, we obtain an exact form of an optimal policy for the case of finite states and actions. Finally, as an example, a controlled queueing system is given to illustrate our results. 展开更多
关键词 Discrete-time markov decision process (DTmdp constrainedoptimality varying discount factor unbounded cost
原文传递
Convergence of Markov decision processes with constraints and state-action dependent discount factors 被引量:2
18
作者 Xiao Wu Xianping Guo 《Science China Mathematics》 SCIE CSCD 2020年第1期167-182,共16页
This paper is concerned with the convergence of a sequence of discrete-time Markov decision processes(DTMDPs)with constraints,state-action dependent discount factors,and possibly unbounded costs.Using the convex analy... This paper is concerned with the convergence of a sequence of discrete-time Markov decision processes(DTMDPs)with constraints,state-action dependent discount factors,and possibly unbounded costs.Using the convex analytic approach under mild conditions,we prove that the optimal values and optimal policies of the original DTMDPs converge to those of the"limit"one.Furthermore,we show that any countablestate DTMDP can be approximated by a sequence of finite-state DTMDPs,which are constructed using the truncation technique.Finally,we illustrate the approximation by solving a controlled queueing system numerically,and give the corresponding error bound of the approximation. 展开更多
关键词 discrete-time markov decision processes state-action dependent discount factors unbounded costs CONVERGENCE
原文传递
Optimal Policies for Quantum Markov Decision Processes 被引量:2
19
作者 Ming-Sheng Ying Yuan Feng Sheng-Gang Ying 《International Journal of Automation and computing》 EI CSCD 2021年第3期410-421,共12页
Markov decision process(MDP)offers a general framework for modelling sequential decision making where outcomes are random.In particular,it serves as a mathematical framework for reinforcement learning.This paper intro... Markov decision process(MDP)offers a general framework for modelling sequential decision making where outcomes are random.In particular,it serves as a mathematical framework for reinforcement learning.This paper introduces an extension of MDP,namely quantum MDP(q MDP),that can serve as a mathematical model of decision making about quantum systems.We develop dynamic programming algorithms for policy evaluation and finding optimal policies for q MDPs in the case of finite-horizon.The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world. 展开更多
关键词 Quantum markov decision processes quantum machine learning reinforcement learning dynamic programming decision making
原文传递
Solving Markov Decision Processes with Downside Risk Adjustment 被引量:1
20
作者 Abhijit Gosavi Anish Parulekar 《International Journal of Automation and computing》 EI CSCD 2016年第3期235-245,共11页
Markov decision processes (MDPs) and their variants are widely studied in the theory of controls for stochastic discrete- event systems driven by Markov chains. Much of the literature focusses on the risk-neutral cr... Markov decision processes (MDPs) and their variants are widely studied in the theory of controls for stochastic discrete- event systems driven by Markov chains. Much of the literature focusses on the risk-neutral criterion in which the expected rewards, either average or discounted, are maximized. There exists some literature on MDPs that takes risks into account. Much of this addresses the exponential utility (EU) function and mechanisms to penalize different forms of variance of the rewards. EU functions have some numerical deficiencies, while variance measures variability both above and below the mean rewards; the variability above mean rewards is usually beneficial and should not be penalized/avoided. As such, risk metrics that account for pre-specified targets (thresholds) for rewards have been considered in the literature, where the goal is to penalize the risks of revenues falling below those targets. Existing work on MDPs that takes targets into account seeks to minimize risks of this nature. Minimizing risks can lead to poor solutions where the risk is zero or near zero, but the average rewards are also rather low. In this paper, hence, we study a risk-averse criterion, in particular the so-called downside risk, which equals the probability of the revenues falling below a given target, where, in contrast to minimizing such risks, we only reduce this risk at the cost of slightly lowered average rewards. A solution where the risk is low and the average reward is quite high, although not at its maximum attainable value, is very attractive in practice. To be more specific, in our formulation, the objective function is the expected value of the rewards minus a scalar times the downside risk. In this setting, we analyze the infinite horizon MDP, the finite horizon MDP, and the infinite horizon semi-MDP (SMDP). We develop dynamic programming and reinforcement learning algorithms for the finite and infinite horizon. The algorithms are tested in numerical studies and show encouraging performance. 展开更多
关键词 Downside risk markov decision processes reinforcement learning dynamic programming TARGETS thresholds.
原文传递
上一页 1 2 47 下一页 到第
使用帮助 返回顶部