This paper studies the nonstationary filtering problem of Markov jump system under <span style="white-space:nowrap;"><i>l</i><sub>2</sub> - <i>l</i><sub>...This paper studies the nonstationary filtering problem of Markov jump system under <span style="white-space:nowrap;"><i>l</i><sub>2</sub> - <i>l</i><sub>∞</sub> </span>performance. Due to the difference in propagation channels, signal strength and phase will inevitably change randomly and cause the waste of signals resources. In response to this problem, a channel fading model with multiplicative noise is introduced. And then a nonstationary filter, which receives signals more efficiently is designed. Meanwhile Lyapunov function is constructed for error analysis. Finally, the gain matrix for filtering is obtained by solving the matrix inequality, and the results showed that the nonstationary filter converges to the stable point more quickly than the traditional asynchronous filter, the stability of the designed filter is verified.展开更多
This paper is concerned with the H∞ filtering problems for both continuous- and discrete-time Markov jumping linear systems (MJLS) with non-accessible mode information. A new design method is proposed, which greatl...This paper is concerned with the H∞ filtering problems for both continuous- and discrete-time Markov jumping linear systems (MJLS) with non-accessible mode information. A new design method is proposed, which greatly reduces the overdesign introduced in the derivation process. The desired filters can be obtained from the solution of convex optimization problems in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. Numerical examples are provided to illustrate the advantages of the proposed approach.展开更多
This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utiliz...This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.展开更多
In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n...In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.展开更多
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback me...The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.展开更多
This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constan...This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.展开更多
The robust H∞ control problems for stochastic fuzzy neutral Markov jump systems(MJSs) with parameters uncertainties and multiple time-delays are considered.The delays are respectively considered as constant and tim...The robust H∞ control problems for stochastic fuzzy neutral Markov jump systems(MJSs) with parameters uncertainties and multiple time-delays are considered.The delays are respectively considered as constant and time varying,and the uncertain parameters are assumed to be norm bounded.By means of Takagi-Sugeno fuzzy models,the overall closed-loop fuzzy dynamics are constructed through selected membership functions.By selecting the appropriate Lyapunov-Krasovskii functions,the sufficient condition is given such that the uncertain fuzzy neutral MJSs are stochastically stability for all admissible uncertainties and satisfies the given H∞ control index.The stability and H∞ control criteria are formulated in the form of linear matrix inequalities,which can be easily checked in practice.Practical examples illustrate the effectiveness of the developed techniques.展开更多
In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the...In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the reality,the state and input constraints have been considered along with the external disturbances.An iterative algorithm is designed such that model predictive noncooperative game could converge to the socalledε-Nash equilibrium in a distributed manner.Sufficient conditions are established to guarantee the convergence of the proposed algorithm.In addition,a set of easy-to-check conditions are provided to ensure the mean-square uniform bounded stability of the underlying MPSs.Finally,a numerical example on a group of spacecrafts is studied to verify the effectiveness of the proposed method.展开更多
This paper is concerned with finite-time H_(∞) filtering for Markov jump systems with uniform quantization. The objective is to design quantized mode-dependent filters to ensure that the filtering error system is not...This paper is concerned with finite-time H_(∞) filtering for Markov jump systems with uniform quantization. The objective is to design quantized mode-dependent filters to ensure that the filtering error system is not only mean-square finite-time bounded but also has a prescribed finite-time H_(∞) performance. First, the case where the switching modes of the filter align with those of the MJS is considered. A numerically tractable filter design approach is proposed utilizing a mode-dependent Lyapunov function, Schur’s complement, and Dynkin’s formula. Then, the study is extended to a scenario where the switching modes of the filter can differ from those of the MJS. To address this situation, a mode-mismatched filter design approach is developed by leveraging a hidden Markov model to describe the asynchronous mode switching and the double expectation formula. Finally, a spring system model subject to a Markov chain is employed to validate the effectiveness of the quantized filter design approaches.展开更多
A Markovian risk process is considered in this paper, which is the generalization of the classical risk model. It is proper that a risk process with large claims is modelled as the Markovian risk model. In such a mode...A Markovian risk process is considered in this paper, which is the generalization of the classical risk model. It is proper that a risk process with large claims is modelled as the Markovian risk model. In such a model, the occurrence of claims is described by a point process {N(t)}t≥0 with N(t) being the number of jumps during the interval (0, t] for a Markov jump process. The ruin probability ψ(u) of a company facing such a risk model is mainly studied. An integral equation satisfied by the ruin probability function ψ(u) is obtained and the bounds for the convergence rate of the ruin probability ψ(u) are given by using a generalized renewal technique developed in the paper.展开更多
We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-...We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule,as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously.Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an H_(∞) performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example.展开更多
This paper deals with the robust guaranteed cost observer with guaranteed cost performance for a class of linear uncertain jump systems with state delay.The transition of the jumping parameters in systems is governed ...This paper deals with the robust guaranteed cost observer with guaranteed cost performance for a class of linear uncertain jump systems with state delay.The transition of the jumping parameters in systems is governed by a finite-state Markov process.Based on the stability theory in stochastic differential equations,a sufficient condition on the existence of the proposed robust guaranteed cost observer is derived.Robust guaranteed cost observers are designed in terms of a set of linear coupled matrix inequalities.A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost observers.展开更多
The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti...The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.展开更多
The robust H∞ control for networked control systems with both stochastic network-induced delay and data packet dropout is studied. When data are transmitted over network, the stochastic data packet dropout process ca...The robust H∞ control for networked control systems with both stochastic network-induced delay and data packet dropout is studied. When data are transmitted over network, the stochastic data packet dropout process can be described by a two-state Markov chain. The networked control systems with stochastic network-induced delay and data packet dropout are modeled as a discrete time Markov jump linear system with two operation modes. The sufficient condition of robust H∞ control for networked control systems stabilized by state feedback controller is presented in terms of linear matrix inequality. The state feedback controller can be constructed via the solution of a set of linear matrix inequalities. An example is given to verify the effectiveness of the method proposed.展开更多
This paper characterizes the joint effects of plant uncertainty,Denial-of-Service(DoS)attacks,and fading channel on the stabilization problem of networked control systems(NCSs).It is assumed that the controller remote...This paper characterizes the joint effects of plant uncertainty,Denial-of-Service(DoS)attacks,and fading channel on the stabilization problem of networked control systems(NCSs).It is assumed that the controller remotely controls the plant and the control input is transmitted over a fading channel.Meanwhile,considering the sustained attack cycle and frequency of DoS attacks are random,the packet-loss caused by DoS attacks is modelled by a Markov process.The sampled-data NCS is transformed into a stochastic form with Markov jump and uncertain parameter.Then,based on Lyapunov functional method,linear matrix inequality(LMI)-based sufficient conditions are presented to ensure the stability of uncertain NCSs.The main contribution of this article lies in the construction of NCSs based on DoS attacks into Markov jump system(MJS)and the joint consideration of fading channel and plant uncertainty.展开更多
The receding horizon control(RHC) problem is considered for nonlinear Markov jump systems which can be represented by Takagi-Sugeno fuzzy models subject to constraints both on control inputs and on observe outputs.I...The receding horizon control(RHC) problem is considered for nonlinear Markov jump systems which can be represented by Takagi-Sugeno fuzzy models subject to constraints both on control inputs and on observe outputs.In the given receding horizon,for each mode sequence of the T-S modeled nonlinear system with Markov jump parameter,the cost function is optimized by constraints on state trajectories,so that the optimization control input sequences are obtained in order to make the state into a terminal invariant set.Out of the receding horizon,the stability is guaranteed by searching a state feedback control law.Based on such stability analysis,a linear matrix inequality approach for designing receding horizon predictive controller for nonlinear systems subject to constraints both on the inputs and on the outputs is developed.The simulation shows the validity of this method.展开更多
This paper presents the notions of exact observability and exact detectability for Markov jump linear stochastic systems of Ito type with multiplieative noise (for short, MJLSS). Stochastic Popov-Belevith-Hautus (...This paper presents the notions of exact observability and exact detectability for Markov jump linear stochastic systems of Ito type with multiplieative noise (for short, MJLSS). Stochastic Popov-Belevith-Hautus (PBH) Criterions for exact observability and exact detectability are respectively obtained. As an application, stochastic H2/H∞ control for such MJLSS is discussed under exact detectability.展开更多
In this paper,the problem of mixed optimization for energy sharing and frequency regulation in a typical energy network scenario where energy routers(ERs)interconnected AC microgrids(MGs)is investigated.Continuous-tim...In this paper,the problem of mixed optimization for energy sharing and frequency regulation in a typical energy network scenario where energy routers(ERs)interconnected AC microgrids(MGs)is investigated.Continuous-time Markov chains are introduced to describe the switching paths in the power dynamics of MGs.Such that the modelling of considered energy network system could be closer to the real-world engineering practice.Advanced parameter estimation techniques are integrated into the proposed method to achieve better modelling accuracy and controlling performance.Based on the parameters of MG power dynamics,the mixed H_(2)/H_(∞) controllers are obtained via stochastic control theory.The feasibility and efficacy of the proposed approach are evaluated in numerical examples.展开更多
This paper mainly studies observability and detectability for continuous-time stochastic Markov jump systems.Two concepts called W-observability and W-detectability for such systems are introduced,which are shown to c...This paper mainly studies observability and detectability for continuous-time stochastic Markov jump systems.Two concepts called W-observability and W-detectability for such systems are introduced,which are shown to coincide with various notions of observability and detectability reported recently in literature,such as exact observability,exact detectability and detectability.Besides,by introducing an accumulated energy function,some efficient criteria and interesting properties for both W-observability and W-detectability are obtained.展开更多
This paper is concerned with the H_∞ control problem for a class of nonlinear stochastic Markov jump systems with time-delay and system state-, control input-and external disturbancedependent noise. Firstly, by solvi...This paper is concerned with the H_∞ control problem for a class of nonlinear stochastic Markov jump systems with time-delay and system state-, control input-and external disturbancedependent noise. Firstly, by solving a set of Hamilton-Jacobi inequalities(HJIs), the exponential mean square H_∞ controller design of delayed nonlinear stochastic Markov systems is presented. Secondly,by using fuzzy T-S model approach, the H_∞ controller can be designed via solving a set of linear matrix inequalities(LMIs) instead of HJIs. Finally, two numerical examples are provided to show the effectiveness of the proposed design methods.展开更多
文摘This paper studies the nonstationary filtering problem of Markov jump system under <span style="white-space:nowrap;"><i>l</i><sub>2</sub> - <i>l</i><sub>∞</sub> </span>performance. Due to the difference in propagation channels, signal strength and phase will inevitably change randomly and cause the waste of signals resources. In response to this problem, a channel fading model with multiplicative noise is introduced. And then a nonstationary filter, which receives signals more efficiently is designed. Meanwhile Lyapunov function is constructed for error analysis. Finally, the gain matrix for filtering is obtained by solving the matrix inequality, and the results showed that the nonstationary filter converges to the stable point more quickly than the traditional asynchronous filter, the stability of the designed filter is verified.
基金Supported by the National Nature Science Foundation of China (Grant Nos. 60774015, 60825302)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060248001)Shanghai Natural Science Foundation (Grant No. 07JC14016)
文摘This paper is concerned with the H∞ filtering problems for both continuous- and discrete-time Markov jumping linear systems (MJLS) with non-accessible mode information. A new design method is proposed, which greatly reduces the overdesign introduced in the derivation process. The desired filters can be obtained from the solution of convex optimization problems in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. Numerical examples are provided to illustrate the advantages of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Grant No.62303016)the Research and Development Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of the Ministry of Education of China(Grant No.BWPU2023ZY02)+1 种基金the University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-020)the Key Project of Natural Science Research in Universities of Anhui Province,China(Grant No.2024AH050171).
文摘This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.
基金supported in part by the National Natural Science Foundation of China (62222310, U1813201, 61973131, 62033008)the Research Fund for the Taishan Scholar Project of Shandong Province of China+2 种基金the NSFSD(ZR2022ZD34)Japan Society for the Promotion of Science (21K04129)Fujian Outstanding Youth Science Fund (2020J06022)。
文摘In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.
基金the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (05-0485)Program for Innovative Research Team of Jiangnan University
文摘The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.
基金supported by the National Natural Science Foundation of China (No.60574001)Program for New Century Excellent Talents in University (No.050485)Program for Innovative Research Team of Jiangnan University
文摘This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.
基金supported by the National Natural Science Foundation of China (6097400160904045)+2 种基金the National Natural Science Foundation of Jiangsu Province (BK2009068)the Six Projects Sponsoring Talent Summits of Jiangsu Provincethe Program for Postgraduate Scientific Research and Innovation of Jiangsu Province
文摘The robust H∞ control problems for stochastic fuzzy neutral Markov jump systems(MJSs) with parameters uncertainties and multiple time-delays are considered.The delays are respectively considered as constant and time varying,and the uncertain parameters are assumed to be norm bounded.By means of Takagi-Sugeno fuzzy models,the overall closed-loop fuzzy dynamics are constructed through selected membership functions.By selecting the appropriate Lyapunov-Krasovskii functions,the sufficient condition is given such that the uncertain fuzzy neutral MJSs are stochastically stability for all admissible uncertainties and satisfies the given H∞ control index.The stability and H∞ control criteria are formulated in the form of linear matrix inequalities,which can be easily checked in practice.Practical examples illustrate the effectiveness of the developed techniques.
基金This work was supported by the National Natural Science Foundation of China(62122063,62073268,U22B2036,11931015)the Young Star of Science and Technology in Shaanxi Province(2020KJXX-078)+1 种基金the National Science Fund for Distinguished Young Scholars(62025602)the XPLORER PRIZE。
文摘In this paper,the distributed stochastic model predictive control(MPC)is proposed for the noncooperative game problem of the discrete-time multi-player systems(MPSs)with the undirected Markov jump graph.To reflect the reality,the state and input constraints have been considered along with the external disturbances.An iterative algorithm is designed such that model predictive noncooperative game could converge to the socalledε-Nash equilibrium in a distributed manner.Sufficient conditions are established to guarantee the convergence of the proposed algorithm.In addition,a set of easy-to-check conditions are provided to ensure the mean-square uniform bounded stability of the underlying MPSs.Finally,a numerical example on a group of spacecrafts is studied to verify the effectiveness of the proposed method.
基金Project supported by the Natural Science Foundation of the Anhui Higher Education Institutions (Grant Nos. KJ2020A0248 and 2022AH050310)。
文摘This paper is concerned with finite-time H_(∞) filtering for Markov jump systems with uniform quantization. The objective is to design quantized mode-dependent filters to ensure that the filtering error system is not only mean-square finite-time bounded but also has a prescribed finite-time H_(∞) performance. First, the case where the switching modes of the filter align with those of the MJS is considered. A numerically tractable filter design approach is proposed utilizing a mode-dependent Lyapunov function, Schur’s complement, and Dynkin’s formula. Then, the study is extended to a scenario where the switching modes of the filter can differ from those of the MJS. To address this situation, a mode-mismatched filter design approach is developed by leveraging a hidden Markov model to describe the asynchronous mode switching and the double expectation formula. Finally, a spring system model subject to a Markov chain is employed to validate the effectiveness of the quantized filter design approaches.
文摘A Markovian risk process is considered in this paper, which is the generalization of the classical risk model. It is proper that a risk process with large claims is modelled as the Markovian risk model. In such a model, the occurrence of claims is described by a point process {N(t)}t≥0 with N(t) being the number of jumps during the interval (0, t] for a Markov jump process. The ruin probability ψ(u) of a company facing such a risk model is mainly studied. An integral equation satisfied by the ruin probability function ψ(u) is obtained and the bounds for the convergence rate of the ruin probability ψ(u) are given by using a generalized renewal technique developed in the paper.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61873002, 61703004, 61973199, 61573008, and 61973200)。
文摘We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule,as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously.Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an H_(∞) performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example.
基金Sponsored by the Scientific Research Foundation of Harbin Institute of Technology (Grant No.HIT.2003.02)the Chinese Outstanding Youth Science Foundation(Grant No. 69504002)
文摘This paper deals with the robust guaranteed cost observer with guaranteed cost performance for a class of linear uncertain jump systems with state delay.The transition of the jumping parameters in systems is governed by a finite-state Markov process.Based on the stability theory in stochastic differential equations,a sufficient condition on the existence of the proposed robust guaranteed cost observer is derived.Robust guaranteed cost observers are designed in terms of a set of linear coupled matrix inequalities.A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost observers.
基金supported partly by the National Natural Science Foundation of China(60574001)the Program for New Century Excellent Talents in University(050485)the Program for Innovative Research Team of Jiangnan University.
文摘The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.
基金the National Science and the Technology Pursuit Project of China (2001BA204B01)
文摘The robust H∞ control for networked control systems with both stochastic network-induced delay and data packet dropout is studied. When data are transmitted over network, the stochastic data packet dropout process can be described by a two-state Markov chain. The networked control systems with stochastic network-induced delay and data packet dropout are modeled as a discrete time Markov jump linear system with two operation modes. The sufficient condition of robust H∞ control for networked control systems stabilized by state feedback controller is presented in terms of linear matrix inequality. The state feedback controller can be constructed via the solution of a set of linear matrix inequalities. An example is given to verify the effectiveness of the method proposed.
基金supported in part by the National Natural Science Foundation of China(Nos.62173206,62103229)the China Postdoctoral Science Foundation(Nos.2021M691849,2021M692024)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2021ZD13,ZR2021QF026)the National Key R&D Program of China(No.2021YFE0193900)。
文摘This paper characterizes the joint effects of plant uncertainty,Denial-of-Service(DoS)attacks,and fading channel on the stabilization problem of networked control systems(NCSs).It is assumed that the controller remotely controls the plant and the control input is transmitted over a fading channel.Meanwhile,considering the sustained attack cycle and frequency of DoS attacks are random,the packet-loss caused by DoS attacks is modelled by a Markov process.The sampled-data NCS is transformed into a stochastic form with Markov jump and uncertain parameter.Then,based on Lyapunov functional method,linear matrix inequality(LMI)-based sufficient conditions are presented to ensure the stability of uncertain NCSs.The main contribution of this article lies in the construction of NCSs based on DoS attacks into Markov jump system(MJS)and the joint consideration of fading channel and plant uncertainty.
基金supported by the National Natural Science Foundation of China (6097400160904045)+1 种基金National Natural Science Foundation of Jiangsu Province (BK2009068)Six Projects Sponsoring Talent Summits of Jiangsu Province
文摘The receding horizon control(RHC) problem is considered for nonlinear Markov jump systems which can be represented by Takagi-Sugeno fuzzy models subject to constraints both on control inputs and on observe outputs.In the given receding horizon,for each mode sequence of the T-S modeled nonlinear system with Markov jump parameter,the cost function is optimized by constraints on state trajectories,so that the optimization control input sequences are obtained in order to make the state into a terminal invariant set.Out of the receding horizon,the stability is guaranteed by searching a state feedback control law.Based on such stability analysis,a linear matrix inequality approach for designing receding horizon predictive controller for nonlinear systems subject to constraints both on the inputs and on the outputs is developed.The simulation shows the validity of this method.
基金supported by National Natural Science Foundation of China under Grant Nos 60774020, 60736028,and 60821091
文摘This paper presents the notions of exact observability and exact detectability for Markov jump linear stochastic systems of Ito type with multiplieative noise (for short, MJLSS). Stochastic Popov-Belevith-Hautus (PBH) Criterions for exact observability and exact detectability are respectively obtained. As an application, stochastic H2/H∞ control for such MJLSS is discussed under exact detectability.
基金supported in part by National Key Research and Development Program of China(Grant No.2017YFE0132100)the BNRist Program under(Grant No.BNR2019TD01009)Fundamental Research Funds for the Central Universities of China(B200201071)。
文摘In this paper,the problem of mixed optimization for energy sharing and frequency regulation in a typical energy network scenario where energy routers(ERs)interconnected AC microgrids(MGs)is investigated.Continuous-time Markov chains are introduced to describe the switching paths in the power dynamics of MGs.Such that the modelling of considered energy network system could be closer to the real-world engineering practice.Advanced parameter estimation techniques are integrated into the proposed method to achieve better modelling accuracy and controlling performance.Based on the parameters of MG power dynamics,the mixed H_(2)/H_(∞) controllers are obtained via stochastic control theory.The feasibility and efficacy of the proposed approach are evaluated in numerical examples.
基金supported by the Natural Science Foundation of China under Grant No.61174078the Research Fund for the Taishan Scholar Project of Shandong Province of China+1 种基金the SDUST Research Fund under Grant No.2011KYTD105the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No.LAPS13018
文摘This paper mainly studies observability and detectability for continuous-time stochastic Markov jump systems.Two concepts called W-observability and W-detectability for such systems are introduced,which are shown to coincide with various notions of observability and detectability reported recently in literature,such as exact observability,exact detectability and detectability.Besides,by introducing an accumulated energy function,some efficient criteria and interesting properties for both W-observability and W-detectability are obtained.
基金supported by the National Natural Science Foundation of China under Grant Nos.61573227,61633014the Natural Science Foundation of Shandong Province of China under Grant No.2013ZRE28089+2 种基金the Research Fund for the Taishan Scholar Project of Shandong Province of ChinaSDUST Research Fund under Grant No.2015TDJH105 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No.LAPS16011
文摘This paper is concerned with the H_∞ control problem for a class of nonlinear stochastic Markov jump systems with time-delay and system state-, control input-and external disturbancedependent noise. Firstly, by solving a set of Hamilton-Jacobi inequalities(HJIs), the exponential mean square H_∞ controller design of delayed nonlinear stochastic Markov systems is presented. Secondly,by using fuzzy T-S model approach, the H_∞ controller can be designed via solving a set of linear matrix inequalities(LMIs) instead of HJIs. Finally, two numerical examples are provided to show the effectiveness of the proposed design methods.