This paper studies a queueing model with the finite buffer of capacity K in wireless cellular networks, which has two types of arriving calls--handoff and originating calls, both of which follow the Markov arriving pr...This paper studies a queueing model with the finite buffer of capacity K in wireless cellular networks, which has two types of arriving calls--handoff and originating calls, both of which follow the Markov arriving process with different rates. The channel holding times of the two types of calls follow different phase-type distributions. Firstly, the joint distribution of two queue lengths is derived, and then the dropping and blocking probabilities, the mean queue length and the mean waiting time from the joint distribution are gotten. Finally, numerical examples show the impact of different call arrival rates on the performance measures.展开更多
基金supported by the Postgraduate Innovation Project of Jiangsu University (CX10B 003X)
文摘This paper studies a queueing model with the finite buffer of capacity K in wireless cellular networks, which has two types of arriving calls--handoff and originating calls, both of which follow the Markov arriving process with different rates. The channel holding times of the two types of calls follow different phase-type distributions. Firstly, the joint distribution of two queue lengths is derived, and then the dropping and blocking probabilities, the mean queue length and the mean waiting time from the joint distribution are gotten. Finally, numerical examples show the impact of different call arrival rates on the performance measures.