A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering use...A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two.展开更多
An understanding of protein folding/unfolding processes has important implications for all biological processes, in- eluding protein degradation, protein translocation, aging, and diseases. All-atom molecular dynamics...An understanding of protein folding/unfolding processes has important implications for all biological processes, in- eluding protein degradation, protein translocation, aging, and diseases. All-atom molecular dynamics (MD) simulations are uniquely suitable for it because of their atomic level resolution and accuracy. However, limited by computational ca- pabilities, nowadays even for small and fast-folding proteins, all-atom MD simulations of protein folding still presents a great challenge. An alternative way is to study unfolding process using MD simulations at high temperature. High temper- ature provides more energy to overcome energetic barriers to unfolding, and information obtained from studying unfolding can shed light on the mechanism of folding. In the present study, a 1000-ns MD simulation at high temperature (500 K) was performed to investigate the unfolding process of a small protein, chicken villin headpiece (HP-35). To infer the folding mechanism, a Markov state model was also built from our simulation, which maps out six macrostates during the folding/unfolding process as well as critical transitions between them, revealing the folding mechanism unambiguously.展开更多
In this paper, we will illustrate the use and power of Hidden Markov models in analyzing multivariate data over time. The data used in this study was obtained from the Organization for Economic Co-operation and Develo...In this paper, we will illustrate the use and power of Hidden Markov models in analyzing multivariate data over time. The data used in this study was obtained from the Organization for Economic Co-operation and Development (OECD. Stat database url: https://stats.oecd.org/) and encompassed monthly data on the employment rate of males and females in Canada and the United States (aged 15 years and over;seasonally adjusted from January 1995 to July 2018). Two different underlying patterns of trends in employment over the 23 years observation period were uncovered.展开更多
According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotiona...According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition fimction was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform. And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.展开更多
Based on suitable choice of states, this paper studies the stability of the equilibrium state of the EZ model by regarding the evolution of the EZ model as a Markov chain and by showing that the Markov chain is ergodi...Based on suitable choice of states, this paper studies the stability of the equilibrium state of the EZ model by regarding the evolution of the EZ model as a Markov chain and by showing that the Markov chain is ergodic. The Markov analysis is applied to the EZ model with small number of agents, the exact equilibrium state for N = 5 and numerical results for N = 18 are obtained.展开更多
The research hotspot in post-genomic era is from sequence to function. Building genetic regulatory network (GRN) can help to understand the regulatory mechanism between genes and the function of organisms. Probabilist...The research hotspot in post-genomic era is from sequence to function. Building genetic regulatory network (GRN) can help to understand the regulatory mechanism between genes and the function of organisms. Probabilistic GRN has been paid more attention recently. This paper discusses the Hidden Markov Model (HMM) approach served as a tool to build GRN. Different genes with similar expression levels are considered as different states during training HMM. The probable regulatory genes of target genes can be found out through the resulting states transition matrix and the determinate regulatory functions can be predicted using nonlinear regression algorithm. The experiments on artificial and real-life datasets show the effectiveness of HMM in building GRN.展开更多
The critical slip distance in rate and state model for fault friction in the study of potential earthquakes can vary wildly from micrometers to few me-ters depending on the length scale of the critically stressed faul...The critical slip distance in rate and state model for fault friction in the study of potential earthquakes can vary wildly from micrometers to few me-ters depending on the length scale of the critically stressed fault.This makes it incredibly important to construct an inversion framework that provides good estimates of the critical slip distance purely based on the observed ac-celeration at the seismogram.To eventually construct a framework that takes noisy seismogram acceleration data as input and spits out robust estimates of critical slip distance as the output,we first present the performance of the framework for synthetic data.The framework is based on Bayesian inference and Markov chain Monte Carlo methods.The synthetic data is generated by adding noise to the acceleration output of spring-slider-damper idealization of the rate and state model as the forward model.展开更多
文摘A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11175068 and 11474117)the Self-determined Research Funds of CCNU from the Colleges Basic Research and Operation of MOE,China(Grant No.230-20205170054)
文摘An understanding of protein folding/unfolding processes has important implications for all biological processes, in- eluding protein degradation, protein translocation, aging, and diseases. All-atom molecular dynamics (MD) simulations are uniquely suitable for it because of their atomic level resolution and accuracy. However, limited by computational ca- pabilities, nowadays even for small and fast-folding proteins, all-atom MD simulations of protein folding still presents a great challenge. An alternative way is to study unfolding process using MD simulations at high temperature. High temper- ature provides more energy to overcome energetic barriers to unfolding, and information obtained from studying unfolding can shed light on the mechanism of folding. In the present study, a 1000-ns MD simulation at high temperature (500 K) was performed to investigate the unfolding process of a small protein, chicken villin headpiece (HP-35). To infer the folding mechanism, a Markov state model was also built from our simulation, which maps out six macrostates during the folding/unfolding process as well as critical transitions between them, revealing the folding mechanism unambiguously.
文摘In this paper, we will illustrate the use and power of Hidden Markov models in analyzing multivariate data over time. The data used in this study was obtained from the Organization for Economic Co-operation and Development (OECD. Stat database url: https://stats.oecd.org/) and encompassed monthly data on the employment rate of males and females in Canada and the United States (aged 15 years and over;seasonally adjusted from January 1995 to July 2018). Two different underlying patterns of trends in employment over the 23 years observation period were uncovered.
基金Project(2006AA04Z201) supported by the National High-Tech Research and Development Program of China
文摘According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition fimction was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform. And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60534080, 60774085, and 70771012)
文摘Based on suitable choice of states, this paper studies the stability of the equilibrium state of the EZ model by regarding the evolution of the EZ model as a Markov chain and by showing that the Markov chain is ergodic. The Markov analysis is applied to the EZ model with small number of agents, the exact equilibrium state for N = 5 and numerical results for N = 18 are obtained.
文摘The research hotspot in post-genomic era is from sequence to function. Building genetic regulatory network (GRN) can help to understand the regulatory mechanism between genes and the function of organisms. Probabilistic GRN has been paid more attention recently. This paper discusses the Hidden Markov Model (HMM) approach served as a tool to build GRN. Different genes with similar expression levels are considered as different states during training HMM. The probable regulatory genes of target genes can be found out through the resulting states transition matrix and the determinate regulatory functions can be predicted using nonlinear regression algorithm. The experiments on artificial and real-life datasets show the effectiveness of HMM in building GRN.
文摘The critical slip distance in rate and state model for fault friction in the study of potential earthquakes can vary wildly from micrometers to few me-ters depending on the length scale of the critically stressed fault.This makes it incredibly important to construct an inversion framework that provides good estimates of the critical slip distance purely based on the observed ac-celeration at the seismogram.To eventually construct a framework that takes noisy seismogram acceleration data as input and spits out robust estimates of critical slip distance as the output,we first present the performance of the framework for synthetic data.The framework is based on Bayesian inference and Markov chain Monte Carlo methods.The synthetic data is generated by adding noise to the acceleration output of spring-slider-damper idealization of the rate and state model as the forward model.