期刊文献+
共找到1,538篇文章
< 1 2 77 >
每页显示 20 50 100
基于改进Markov算法的电力线载波通信网络安全态势感知仿真研究 被引量:1
1
作者 彭志超 《电气自动化》 2024年第2期80-82,共3页
针对电力线载波通信网络安全态势感知单位运算时间较长且误差较大等问题,基于改进Markov算法研究一种新型通信网络安全态势感知方法。采用分区采集与降维运算数据预处理,去除电力线载波信号干扰因素。利用隶属关联矩阵挖掘网络安全要素... 针对电力线载波通信网络安全态势感知单位运算时间较长且误差较大等问题,基于改进Markov算法研究一种新型通信网络安全态势感知方法。采用分区采集与降维运算数据预处理,去除电力线载波信号干扰因素。利用隶属关联矩阵挖掘网络安全要素特征,构建层次化Markov网络安全态势感知模型。利用BW算法寻找目标参数最优解,来确定感知目标点位置,缩短挖掘时间,提高感知精准度。经过试验验证,所提方法单位感知时间只有60~90 ms,多组并行感知均方误差不超过2%,表明所提方法能够满足电力线载波通信网络安全态势感知应用需求。 展开更多
关键词 安全态势感知 载波通信 markov算法 BW算法 网络安全 量子遗传算法
下载PDF
具有变时滞Markov跳跃神经网络的H∞控制
2
作者 左丹丹 《计算机应用文摘》 2024年第15期115-120,共6页
文章研究了具有变时滞Markov跳跃神经网络的H∞控制。首先,设计一个输出反馈控制器,以确保Markov跳跃神经网络系统在没有外部扰动的情况下随机稳定,并在零初始条件下具有规定的干扰衰减指标。其次,利用适当的泛函和几个先进不等式获得... 文章研究了具有变时滞Markov跳跃神经网络的H∞控制。首先,设计一个输出反馈控制器,以确保Markov跳跃神经网络系统在没有外部扰动的情况下随机稳定,并在零初始条件下具有规定的干扰衰减指标。其次,利用适当的泛函和几个先进不等式获得所需控制器增益的精确数学表达式。最后,通过数值模拟的例子证明所提控制策略的有效性。 展开更多
关键词 时滞 镇定 markov过程 神经网络
下载PDF
基于Gray-Markov的电力设备物流量多目标组合估计
3
作者 陈耀标 《电子设计工程》 2024年第19期86-89,93,共5页
电力设备物流量较多且所涉及到的环节较为复杂,导致物流量多目标组合估计误差增加,所以设计基于Gray-Markov的电力设备物流量多目标组合估计方法。利用数据录入模块、数据分析处理模块搭建数据采集平台,实现电力设备物流量数据采集。改... 电力设备物流量较多且所涉及到的环节较为复杂,导致物流量多目标组合估计误差增加,所以设计基于Gray-Markov的电力设备物流量多目标组合估计方法。利用数据录入模块、数据分析处理模块搭建数据采集平台,实现电力设备物流量数据采集。改进卷积神经网络,构建深度空洞卷积去噪模型,对采集到的数据实施去噪处理。结合BP神经网络与Gray-Markov实现电力设备物流量多目标组合估计。测试结果表明,该方法的绝对误差平均值最低仅为1 025.21,平均相对误差百分比一直低于1.8%,估计误差比较小,精度较高。 展开更多
关键词 Gray-markov 电力设备 多目标 组合估计 BP神经网络
下载PDF
基于Markov-BP神经网络的武汉市物流需求预测
4
作者 汪勇 廖倩茹 +1 位作者 艾学轶 蒲秋梅 《物流技术》 2023年第9期24-27,96,共5页
物流需求预测是城市发展规划中的重要组成部分,为了能够科学地预测出武汉市的物流需求,选择武汉市地区生产总值、社会商品零售总值及货物进出口作为输入指标,将货物运输量作为输出指标,利用BP神经网络模型进行预测。在此基础上,借助马... 物流需求预测是城市发展规划中的重要组成部分,为了能够科学地预测出武汉市的物流需求,选择武汉市地区生产总值、社会商品零售总值及货物进出口作为输入指标,将货物运输量作为输出指标,利用BP神经网络模型进行预测。在此基础上,借助马尔可夫链(Markov)对误差值进行修正,使平均相对误差从7.3%下降至1.9%。结果表明,与单一的BP神经网络模型以及其他神经网络组合方法相比,Markov-BP神经网络模型的预测精度更高,使用Markov-BP神经网络模型,对武汉市未来物流需求预测具有一定的参考价值。 展开更多
关键词 物流需求预测 BP神经网络 马尔可夫链 武汉
下载PDF
基于二阶Markov预测的星地链路切换策略 被引量:1
5
作者 刘治国 查雪丽 潘成胜 《计算机仿真》 北大核心 2023年第11期27-33,共7页
由于LEO卫星和高速终端都处于高速移动状态,在通信时LEO卫星和高速终端频繁切换导致切换准确率低,提出基于二阶马尔科夫预测的星地链路切换策略。在软件定义网络(SDN)架构基础上,将控制器部署在GEO卫星控制切换决策。通过对高速终端移... 由于LEO卫星和高速终端都处于高速移动状态,在通信时LEO卫星和高速终端频繁切换导致切换准确率低,提出基于二阶马尔科夫预测的星地链路切换策略。在软件定义网络(SDN)架构基础上,将控制器部署在GEO卫星控制切换决策。通过对高速终端移动轨迹进行二阶Markov建模,预测其下一轨迹。GEO卫星通过轨迹预测结果结合卫星星历确定候选目标卫星集合。结合切换要素,根据灰色关联和专家评判结合的权重法计算候选目标卫星集合中卫星权重。GEO卫星选择权重最大的卫星作为切换卫星进行切换。仿真结果表明,上述策略在切换预测准确率、平均切换次数和切换失败率方面优于传统切换策略,提高了切换准确率,减少了切换次数,降低了切换失败率。 展开更多
关键词 二阶马尔科夫 轨迹预测 星地链路切换 软件定义网络
下载PDF
Heterogeneous Network Selection Optimization Algorithm Based on a Markov Decision Model 被引量:7
6
作者 Jianli Xie Wenjuan Gao Cuiran Li 《China Communications》 SCIE CSCD 2020年第2期40-53,共14页
A network selection optimization algorithm based on the Markov decision process(MDP)is proposed so that mobile terminals can always connect to the best wireless network in a heterogeneous network environment.Consideri... A network selection optimization algorithm based on the Markov decision process(MDP)is proposed so that mobile terminals can always connect to the best wireless network in a heterogeneous network environment.Considering the different types of service requirements,the MDP model and its reward function are constructed based on the quality of service(QoS)attribute parameters of the mobile users,and the network attribute weights are calculated by using the analytic hierarchy process(AHP).The network handoff decision condition is designed according to the different types of user services and the time-varying characteristics of the network,and the MDP model is solved by using the genetic algorithm and simulated annealing(GA-SA),thus,users can seamlessly switch to the network with the best long-term expected reward value.Simulation results show that the proposed algorithm has good convergence performance,and can guarantee that users with different service types will obtain satisfactory expected total reward values and have low numbers of network handoffs. 展开更多
关键词 heterogeneous wireless networks markov decision process reward function genetic algorithm simulated annealing
下载PDF
MARKOV SKELETON PROCESS IN PERT NETWORKS 被引量:1
7
作者 孔祥星 张玄 候振挺 《Acta Mathematica Scientia》 SCIE CSCD 2010年第5期1440-1448,共9页
In this article, we investigate Programming Evaluation and Review Technique networks with independently and generally distributed activity durations. For any path in this network, we select all the activities related ... In this article, we investigate Programming Evaluation and Review Technique networks with independently and generally distributed activity durations. For any path in this network, we select all the activities related to this path such that the completion time of the sub-network (only consisting of all the related activities) is equal to the completion time of this path. We use the elapsed time as the supplementary variables and model this sub-network as a Markov skeleton process, the state space is related to the subnetwork structure. Then use the backward equation to compute the distribution of the sub-network's completion time, which is an important rule in project management and scheduling. 展开更多
关键词 PERT networks markov skeleton process backward equation
下载PDF
H_(∞) state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
8
作者 Hao Shen Jia-Cheng Wu +1 位作者 Jian-Wei Xia Zhen Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期88-95,共8页
We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-... We investigate the problem of H_(∞) state estimation for discrete-time Markov jump neural networks. The transition probabilities of the Markov chain are assumed to be piecewise time-varying, and the persistent dwell-time switching rule,as a more general switching rule, is adopted to describe this variation characteristic. Afterwards, based on the classical Lyapunov stability theory, a Lyapunov function is established, in which the information about the Markov jump feature of the system mode and the persistent dwell-time switching of the transition probabilities is considered simultaneously.Furthermore, via using the stochastic analysis method and some advanced matrix transformation techniques, some sufficient conditions are obtained such that the estimation error system is mean-square exponentially stable with an H_(∞) performance level, from which the specific form of the estimator can be obtained. Finally, the rationality and effectiveness of the obtained results are verified by a numerical example. 展开更多
关键词 markov jump neural networks persistent dwell-time switching rule H_(∞)state estimation meansquare exponential stability
下载PDF
Analysis of reactive routing protocols for mobile ad hoc networks in Markov models
9
作者 王汉兴 胡细 +1 位作者 方建超 贾维嘉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第1期127-139,共13页
Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the net... Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the network is considered as a birthdeath process and the space is reused for n times in the flooding process, which is named as an n-spatiai reuse birth-death model (n-SRBDM). We analyze the performance of the network under the dynamic source routing protocol (DSR) which is a famous reactive routing protocol. Some performance parameters of the route discovery are studied such as the probability distribution and the expectation of the flooding distance, the probability that a route is discovered by a query packet with a hop limit, the probability that a request packet finds a τ-time-valid route or a symmetric-valid route, and the average time needed to discover a valid route. For the route maintenance, some parameters are introduced and studied such as the average frequency of route recovery and the average time of a route to be valid. We compare the two models with spatial reuse and without spatial reuse by evaluating these parameters. It is shown that the spatial reuse model is much more effective in routing. 展开更多
关键词 Mobile ad hoc network markov model routing protocol performance analysis
下载PDF
Reliability Evaluation of Two-Stage Directed Semi-Markov Repairable Network Systems 被引量:2
10
作者 Ruiqin Fan Liying Wang Tongliang Li 《Applied Mathematics》 2013年第4期690-693,共4页
A two-stage directed Semi-Markov repairable network system is presented in this paper to model the performance of many transmission systems, such as power or oil transmission network, water or gas supply network, etc.... A two-stage directed Semi-Markov repairable network system is presented in this paper to model the performance of many transmission systems, such as power or oil transmission network, water or gas supply network, etc. The availability of the system is discussed by using Markov renewal theory, Laplace transform and probability analysis methods. A numerical example is given to illustrate the results obtained in the paper. 展开更多
关键词 Directed network SYSTEM Reliability AVAILABILITY Semi-markov REPAIRABLE SYSTEM markov RENEWAL Process
下载PDF
Risk Identification based on Hidden Semi-Markov Model in Smart Distribution Network
11
作者 Fangyuan Chang Wanxing Sheng +2 位作者 Tianshu Zhang Yu Zhang Xiaohui Song 《Energy and Power Engineering》 2013年第4期954-957,共4页
The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network wi... The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network will effectively improve the security, reliability and efficiency, reduce the system losses, and promote the development of sustainable energy of the power grid. The risk identification process is the most fundamental and crucial part of risk analysis in the smart distribution network. The risk control strategies will carry out on fully recognizing and understanding of the risk events and the causes. On condition that the risk incidents and their reason are identified, the corresponding qualitative / quantitative risk assessment will be performed based on the influences and ultimately to develop effective control measures. This paper presents the concept and methodology on the risk identification by means of Hidden Semi-Markov Model (HSMM) based on the research of the relationship between the operating characteristics/indexes and the risk state, which provides the theoretical and practical support for the risk assessment and risk control technology. 展开更多
关键词 RISK IDENTIFICATION Hidden Semi-markov MODELS SMART DISTRIBUTION network
下载PDF
Interaction Dynamics in a Social Network Using Hidden Markov Model
12
作者 Davis Bundi Ntwiga Carolyne Ogutu 《Social Networking》 2018年第3期147-155,共9页
Agents interactions in a social network are dynamic and stochastic. We model the dynamic interactions using the hidden Markov model, a probability model which has a wide array of applications. The transition matrix wi... Agents interactions in a social network are dynamic and stochastic. We model the dynamic interactions using the hidden Markov model, a probability model which has a wide array of applications. The transition matrix with three states, forgetting, reinforcement and exploration is estimated using simulation. Singular value decomposition estimates the observation matrix for emission of low, medium and high interaction rates. This is achieved when the rank approximation is applied to the transition matrix. The initial state probabilities are then estimated with rank approximation of the observation matrix. The transition and the observation matrices estimate the state and observed symbols in the model. Agents interactions in a social network account for between 20% and 50% of all the activities in the network. Noise contributes to the other portion due to interaction dynamics and rapid changes observable from the agents transitions in the network. In the model, the interaction proportions are low with 11%, medium with 56% and high with 33%. Hidden Markov model has a strong statistical and mathematical structure to model interactions in a social network. 展开更多
关键词 AGENTS INTERACTIONS SOCIAL network Hidden markov Model SINGULAR Value DECOMPOSITION
下载PDF
The application of hidden markov model in building genetic regulatory network
13
作者 Rui-Rui Ji Ding Liu Wen Zhang 《Journal of Biomedical Science and Engineering》 2010年第6期633-637,共5页
The research hotspot in post-genomic era is from sequence to function. Building genetic regulatory network (GRN) can help to understand the regulatory mechanism between genes and the function of organisms. Probabilist... The research hotspot in post-genomic era is from sequence to function. Building genetic regulatory network (GRN) can help to understand the regulatory mechanism between genes and the function of organisms. Probabilistic GRN has been paid more attention recently. This paper discusses the Hidden Markov Model (HMM) approach served as a tool to build GRN. Different genes with similar expression levels are considered as different states during training HMM. The probable regulatory genes of target genes can be found out through the resulting states transition matrix and the determinate regulatory functions can be predicted using nonlinear regression algorithm. The experiments on artificial and real-life datasets show the effectiveness of HMM in building GRN. 展开更多
关键词 GENETIC REGULATORY network Hidden markov Model STATES TRANSITION GENE Expression Data
下载PDF
Network Coding for Wireless Sensor Network Cluster over Rayleigh Fading Channel: Finite State Markov Chain
14
作者 Mohammad Alhihi 《International Journal of Communications, Network and System Sciences》 2017年第1期1-11,共11页
Network Coding (NC) is confirmed to be power and bandwidth efficient technique, because of the less number of transmitted packets over the network. Wireless Sensor Network (WSN) is usually power limited network applic... Network Coding (NC) is confirmed to be power and bandwidth efficient technique, because of the less number of transmitted packets over the network. Wireless Sensor Network (WSN) is usually power limited network application, and in many scenarios it is power and bandwidth limited application. The proposed scenario in this paper applies the advantages of NC over WSN to obtain such power and bandwidth efficient WSN. To take the advantages of NC over the one of the most needed applications i.e., WSN, we come up to what this paper is discussing. We consider a WSN (or its cluster) that consists of M nodes that transmit equal-length information packets to a common destination node D over wireless Rayleigh block-fading channel where the instantaneous SNR is assumed to be constant over a single packet transmission period. Finite-State packet level Markov chain (FSMC) model is applied to give the channel more practical aspect. The simulation results showed that applying NC over the WSN cluster improved the channel bandwidth significantly by decreasing the number of the Automatic Repeat Request (ARQ), resulting in improving the power consumption significantly. The results are collected for different transmission distances to evaluate the behavior to the proposed scenario with regard to the bath losses effect. 展开更多
关键词 RAYLEIGH FADING Channel network Coding Finite-Stage markov Chain
下载PDF
Guaranteed cost control for discrete-time networked control systems with random Markov delays 被引量:1
15
作者 Li Qiu Bugong Xu Shanbin Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期661-671,共11页
The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced ... The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method. 展开更多
关键词 networked control systems (NCSs) guaranteed costcontrol random markov delays linear matrix inequality (LMI).
下载PDF
Construction and Control of Genetic Regulatory Networks:A Multivariate Markov Chain Approach
16
作者 Shu-Qin Zhang Ling-Yun Wu +2 位作者 Wai-Ki Ching Yue Jiao Raymond, H. Chan 《Journal of Biomedical Science and Engineering》 2008年第1期15-21,共7页
In the post-genomic era, the construction and control of genetic regulatory networks using gene expression data is a hot research topic. Boolean networks (BNs) and its extension Probabilistic Boolean Networks (PBNs) h... In the post-genomic era, the construction and control of genetic regulatory networks using gene expression data is a hot research topic. Boolean networks (BNs) and its extension Probabilistic Boolean Networks (PBNs) have been served as an effective tool for this purpose. However, PBNs are difficult to be used in practice when the number of genes is large because of the huge computational cost. In this paper, we propose a simplified multivariate Markov model for approximating a PBN The new model can preserve the strength of PBNs, the ability to capture the inter-dependence of the genes in the network, qnd at the same time reduce the complexity of the network and therefore the computational cost. We then present an optimal control model with hard constraints for the purpose of control/intervention of a genetic regulatory network. Numerical experimental examples based on the yeast data are given to demonstrate the effectiveness of our proposed model and control policy. 展开更多
关键词 Gene Expression SEQUENCES MULTIVARIATE markov CHAIN Optimal Control Policy Probabilistic BOOLEAN networks.
下载PDF
基于深度强化学习的多自动导引车运动规划 被引量:1
17
作者 孙辉 袁维 《计算机集成制造系统》 EI CSCD 北大核心 2024年第2期708-716,共9页
为解决移动机器人仓储系统中的多自动导引车(AGV)无冲突运动规划问题,建立了Markov决策过程模型,提出一种新的基于深度Q网络(DQN)的求解方法。将AGV的位置作为输入信息,利用DQN估计该状态下采取每个动作所能获得的最大期望累计奖励,并... 为解决移动机器人仓储系统中的多自动导引车(AGV)无冲突运动规划问题,建立了Markov决策过程模型,提出一种新的基于深度Q网络(DQN)的求解方法。将AGV的位置作为输入信息,利用DQN估计该状态下采取每个动作所能获得的最大期望累计奖励,并采用经典的深度Q学习算法进行训练。算例计算结果表明,该方法可以有效克服AGV车队在运动中的碰撞问题,使AGV车队能够在无冲突的情况下完成货架搬运任务。与已有启发式算法相比,该方法求得的AGV运动规划方案所需要的平均最大完工时间更短。 展开更多
关键词 多自动导引车 运动规划 markov决策过程 深度Q网络 深度Q学习
下载PDF
基于神经网络与改进马尔可夫链中压背景噪声建模研究
18
作者 谢志远 曹通 《无线电工程》 2024年第10期2325-2332,共8页
在中压电力线通信中,信道噪声构成复杂,需根据不同类型噪声单独分析建模。针对一段特定中压线路的背景噪声,提出了一种基于小波包变换的噪声模型,将得到的小波包系数分别进行神经网络训练和改进马尔可夫链计算转移概率矩阵,得到新的小... 在中压电力线通信中,信道噪声构成复杂,需根据不同类型噪声单独分析建模。针对一段特定中压线路的背景噪声,提出了一种基于小波包变换的噪声模型,将得到的小波包系数分别进行神经网络训练和改进马尔可夫链计算转移概率矩阵,得到新的小波包系数重构噪声信号,并进行仿真验证及去噪,同时将2种方法与传统直接神经网络训练比较分析。结果表明,基于改进马尔可夫链方法所建噪声比传统马尔可夫链方法更加准确,基于小波包变换的神经网络方法所建噪声与原噪声相似度更高,去噪效果更好,且优于传统神经网络训练方法,为进一步研究中压电力线通信提供了可行性方案。 展开更多
关键词 中压电力线通信 小波包变换 神经网络 马尔可夫链
下载PDF
基于MTF和改进残差网络的轴承故障定量诊断方法
19
作者 李凌轩 马振玮 +1 位作者 于泽峻 邢壮 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期697-706,共10页
有别于目前滚动轴承故障诊断多集中在定性分析阶段,提出了一种使用图像分类的滚动轴承故障定量诊断方法.采用重叠采样方法,对一维时序数据进行数据增强,使用马尔可夫转换场(Markov transition field,MTF)方法将一维时序数据转换成二维图... 有别于目前滚动轴承故障诊断多集中在定性分析阶段,提出了一种使用图像分类的滚动轴承故障定量诊断方法.采用重叠采样方法,对一维时序数据进行数据增强,使用马尔可夫转换场(Markov transition field,MTF)方法将一维时序数据转换成二维图像,为输入到神经网络模型中提供二维图像样本并保留了时域信息,搭建和训练基于迁移学习微调处理的ResNeXt和ResNeSt改进残差网络,将故障图像进行分类并实现故障诊断.采用混淆矩阵和t分布领域嵌入(t-distributed stochastic neighbor embedding,t-SNE)可视化方法进行实验,结果表明,该滚动轴承故障定量诊断方法能够实现多工况滚动轴承故障的定量诊断,且具有诊断精度高和训练速度快的优点. 展开更多
关键词 轴承故障 马尔可夫转换场 残差网络 迁移学习 定量诊断
下载PDF
考虑光伏电源可靠性的新能源配电网数据驱动无功电压优化控制 被引量:1
20
作者 张波 高远 +2 位作者 李铁成 胡雪凯 贾焦心 《中国电机工程学报》 EI CSCD 北大核心 2024年第15期5934-5946,I0008,共14页
充分挖掘分布式光伏电源的无功支撑能力,有助于解决光伏高比例接入带来的配电网电压波动、电压越限以及新能源消纳等问题,但光伏电源无功输出会造成其功率器件结温越限或剧烈波动,严重威胁到光伏电源的可靠运行。为此,提出考虑光伏电源... 充分挖掘分布式光伏电源的无功支撑能力,有助于解决光伏高比例接入带来的配电网电压波动、电压越限以及新能源消纳等问题,但光伏电源无功输出会造成其功率器件结温越限或剧烈波动,严重威胁到光伏电源的可靠运行。为此,提出考虑光伏电源可靠性的新能源配电网数据驱动无功电压优化控制策略。首先,提出一种基于数据驱动的光伏电源可靠性评估方法,该方法采用XGBoost机器学习模型计算IGBT结温,提高了IGBT结温计算效率,避免了评估精度对IGBT参数的依赖;进而建立考虑光伏电源可靠性的配电网无功电压优化模型,将IGBT结温均值和结温波动引入模型优化目标;然后,将该模型进行马尔可夫决策过程转化,并基于深度确定性策略梯度强化学习算法完成智能体训练;最后,通过IEEE33节点系统验证所提策略在无功电压快速优化和光伏电源可靠性提升方面的优势。 展开更多
关键词 配电网 IGBT可靠性 无功电压优化 马尔可夫决策过程 强化学习
下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部