A small cubic closed vessel with schlieren measurement technique combined with high-speed video camera were used to study limit flame properties under microgravity conditions at atmospheric pressure and room temperatu...A small cubic closed vessel with schlieren measurement technique combined with high-speed video camera were used to study limit flame properties under microgravity conditions at atmospheric pressure and room temperature.The rich flammability limit of C3H8/air was determined to be 9.2% C3H8.Stretched flame propagation speeds,stretched laminar burning velocities and unstretched laminar burning velocities near rich C3H8/air flammability limits were measured at different equivalence ratios.Outwardly propagating spherical flames were used to study the sensitivities of the flame propagation speeds and laminar burning velocities to flame stretch using Markstein lengths.Unstretched laminar burning velocity at rich flammability limit was determined to be 1.09cm/s.Lewis numbers were less than unity in rich C3H8/air and negative Markstein lengths were concluded.Absolute values of Markstein lengths were found to decrease linearly with equivalence ratios increase.展开更多
The laminar flame propagation of 1-heptene/air mixtures covering equivalence ratios from 0.7 to 1.5 is investigated in a constant-volume cylindrical combustion vessel at 373K and elevated pressures (1, 2, 5, and 10 at...The laminar flame propagation of 1-heptene/air mixtures covering equivalence ratios from 0.7 to 1.5 is investigated in a constant-volume cylindrical combustion vessel at 373K and elevated pressures (1, 2, 5, and 10 atm). Laminar flame speed and Markstein length are derived from the recorded schlieren images. A kinetic model of 1-heptene combustion is developed based on our previous kinetic model of 1-hexene. The model is validated against the laminar flame speed data measured in this work and the ignition delay time data in literature. Modeling analyses, such as sensitivity analysis and rate of production analysis, are performed to help understand the high temperature chemistry of 1-heptene under various pressures and its influence on the laminar flame propagation. Furthermore, the laminar flame propagation of 1-heptene/air mixtures is compared with that of n-heptane/air mixtures reported in our previous work. The laminar flame speed values of 1-heptene/air mixtures are observed to be faster than those of n-heptane/air mixtures under most conditions due to the enhanced exothermicity and reactivity.展开更多
Natural gas is a promising alternative fuel for the internal combustion engine,and natural gas engine has become an efficient and feasible measure to deal with the energy shortage and climate change.Since the laminar ...Natural gas is a promising alternative fuel for the internal combustion engine,and natural gas engine has become an efficient and feasible measure to deal with the energy shortage and climate change.Since the laminar flame characteristics are the foundation of the turbulent flame,the laminar flame characteristics of natural gas have a significant impact on the combustion status and efficiency of the engine.A visual constant volume bomb was used to study the influence of the gas components,different excess air coefficient(λ),and initial conditions on the laminar combustion characteristics of natural gas.The experimental results showed that when the initial pressure and temperature were 0.1 MPa and 300 K respectively,compared to propane,ethane had a remarkable influence on the equivalent-combustion laminar-combustion-speed,with an average increase of approximately 5.1%for every 2.5%increase in the ethane proportion.The laminar combustion velocity of the natural gas under different excess air coefficients had a maximum value at aboutλ=1.0,and the Markstein length of the flame decreased with the increase of theλ.The increase in the initial pressure of the mixture resulted in a decrease in the equivalent-combustion laminar-combustion-speed of the flame,a significant decrease in the Markstein length.The increase of the initial temperature of the mixture led to a rapid increase of the equivalent-combustion laminar-combustion-speed,but the effect on the flame Markstein length was not dominant.展开更多
In order to illustrate the combustion characteristics of RP-3 kerosene which is widely used in Chinese aero-engines, the combustion characteristics of RP-3 kerosene were experimentally inves- tigated in a constant vol...In order to illustrate the combustion characteristics of RP-3 kerosene which is widely used in Chinese aero-engines, the combustion characteristics of RP-3 kerosene were experimentally inves- tigated in a constant volume combustion chamber. The experiments were performed at four different pressures of 0.1 MPa, 0.3 MPa, 0.5 MPa and 0.7 MPa, and three different temperatures of 390 K, 420 K and 450 K, and over the equivalence ratio range of 0.6-1.6. Furthermore, the laminar combus- tion speeds of a surrogate fuel for RP-3 kerosene were simulated under certain conditions. The results show that increasing the initial temperature or decreasing the initial pressure causes an increase in the laminar combustion speed of RP-3 kerosene. With the equivalence ratio increasing from 0.6 to 1.6, the laminar combustion speed increases initially and then decreases gradually. The highest laminar combustion speed is measured under fuel rich condition (the equivalence ratio is 1.2). At the same time, the Markstein length shows the same changing trend as the laminar com- bustion speed with modification of the initial pressure. Increasing the initial pressure will increase the instability of the flame front, which is established by decreased Markstein length. However, different from the effects of the initial temperature and equivalence ratio on the laminar combustion speed, increasing the equivalence ratio will lead to a decrease in the Markstein length and the stability of the flame front, and the effect of the initial temperature on the Markstein length is unclear. Further- more, the simulated laminar combustion speeds of the surrogate fuel agree with the corresponding experimental datas of RP-3 kerosene within ~10% deviation under certain conditions.展开更多
Plasma-assisted ignition is a promising technology to improve engine performance. Nanosecond repetitive pulsed discharge is widely used in plasma-assisted ignition owing to its chemical activations and thermal and hyd...Plasma-assisted ignition is a promising technology to improve engine performance. Nanosecond repetitive pulsed discharge is widely used in plasma-assisted ignition owing to its chemical activations and thermal and hydrodynamic expansions. However, the influence of ultrafast heating and hydrodynamic effects on the development of the rich-mixture ignition kernel is largely unknown. The present study aims to illustrate these effects using electrical and schlieren measurement. The number and the frequency of discharge pulses are exactly controlled to establish the relationship among the discharge energy, frequency, and rich-mixture ignition-kernel characteristics. The evolution of the ignition kernel in the early stage is mainly dominated by the discharge energy and frequency, i.e., a greater energy and a higher frequency yield a larger ignition kernel. Moreover, the influence of both the energy and frequency on the ignition kernel gradually disappears as the ignition kernel develops. According to the experimental data and theoretical analysis, the calculated laminar burning velocity is 0.319 m/s with a Markstein length of 13.43±0.11 cm when the voltage is 5.9 k V, the frequency is 3 k Hz, and the equivalence ratio is 1.3. This result indicates that the rich-mixture flame is stable in the early stage of ignition.展开更多
基金Supported by the Research Foundation of Beijing Institute of Technology(20070242004)
文摘A small cubic closed vessel with schlieren measurement technique combined with high-speed video camera were used to study limit flame properties under microgravity conditions at atmospheric pressure and room temperature.The rich flammability limit of C3H8/air was determined to be 9.2% C3H8.Stretched flame propagation speeds,stretched laminar burning velocities and unstretched laminar burning velocities near rich C3H8/air flammability limits were measured at different equivalence ratios.Outwardly propagating spherical flames were used to study the sensitivities of the flame propagation speeds and laminar burning velocities to flame stretch using Markstein lengths.Unstretched laminar burning velocity at rich flammability limit was determined to be 1.09cm/s.Lewis numbers were less than unity in rich C3H8/air and negative Markstein lengths were concluded.Absolute values of Markstein lengths were found to decrease linearly with equivalence ratios increase.
基金supported by the National Key R&D Program of China (No.2017YFA0402800)National Natural Science Foundation of China (No.51622605 and No.91541201)Shanghai Science and Technology Committee (No.17XD1402000)
文摘The laminar flame propagation of 1-heptene/air mixtures covering equivalence ratios from 0.7 to 1.5 is investigated in a constant-volume cylindrical combustion vessel at 373K and elevated pressures (1, 2, 5, and 10 atm). Laminar flame speed and Markstein length are derived from the recorded schlieren images. A kinetic model of 1-heptene combustion is developed based on our previous kinetic model of 1-hexene. The model is validated against the laminar flame speed data measured in this work and the ignition delay time data in literature. Modeling analyses, such as sensitivity analysis and rate of production analysis, are performed to help understand the high temperature chemistry of 1-heptene under various pressures and its influence on the laminar flame propagation. Furthermore, the laminar flame propagation of 1-heptene/air mixtures is compared with that of n-heptane/air mixtures reported in our previous work. The laminar flame speed values of 1-heptene/air mixtures are observed to be faster than those of n-heptane/air mixtures under most conditions due to the enhanced exothermicity and reactivity.
基金The financial support is provided by the National Key R&D Program of China(2022YFE0100100)。
文摘Natural gas is a promising alternative fuel for the internal combustion engine,and natural gas engine has become an efficient and feasible measure to deal with the energy shortage and climate change.Since the laminar flame characteristics are the foundation of the turbulent flame,the laminar flame characteristics of natural gas have a significant impact on the combustion status and efficiency of the engine.A visual constant volume bomb was used to study the influence of the gas components,different excess air coefficient(λ),and initial conditions on the laminar combustion characteristics of natural gas.The experimental results showed that when the initial pressure and temperature were 0.1 MPa and 300 K respectively,compared to propane,ethane had a remarkable influence on the equivalent-combustion laminar-combustion-speed,with an average increase of approximately 5.1%for every 2.5%increase in the ethane proportion.The laminar combustion velocity of the natural gas under different excess air coefficients had a maximum value at aboutλ=1.0,and the Markstein length of the flame decreased with the increase of theλ.The increase in the initial pressure of the mixture resulted in a decrease in the equivalent-combustion laminar-combustion-speed of the flame,a significant decrease in the Markstein length.The increase of the initial temperature of the mixture led to a rapid increase of the equivalent-combustion laminar-combustion-speed,but the effect on the flame Markstein length was not dominant.
基金financial supports from the National Natural Science Foundation of China(No.51376133 and No.51506132)
文摘In order to illustrate the combustion characteristics of RP-3 kerosene which is widely used in Chinese aero-engines, the combustion characteristics of RP-3 kerosene were experimentally inves- tigated in a constant volume combustion chamber. The experiments were performed at four different pressures of 0.1 MPa, 0.3 MPa, 0.5 MPa and 0.7 MPa, and three different temperatures of 390 K, 420 K and 450 K, and over the equivalence ratio range of 0.6-1.6. Furthermore, the laminar combus- tion speeds of a surrogate fuel for RP-3 kerosene were simulated under certain conditions. The results show that increasing the initial temperature or decreasing the initial pressure causes an increase in the laminar combustion speed of RP-3 kerosene. With the equivalence ratio increasing from 0.6 to 1.6, the laminar combustion speed increases initially and then decreases gradually. The highest laminar combustion speed is measured under fuel rich condition (the equivalence ratio is 1.2). At the same time, the Markstein length shows the same changing trend as the laminar com- bustion speed with modification of the initial pressure. Increasing the initial pressure will increase the instability of the flame front, which is established by decreased Markstein length. However, different from the effects of the initial temperature and equivalence ratio on the laminar combustion speed, increasing the equivalence ratio will lead to a decrease in the Markstein length and the stability of the flame front, and the effect of the initial temperature on the Markstein length is unclear. Further- more, the simulated laminar combustion speeds of the surrogate fuel agree with the corresponding experimental datas of RP-3 kerosene within ~10% deviation under certain conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51336011&51522606)the Science Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201172)
文摘Plasma-assisted ignition is a promising technology to improve engine performance. Nanosecond repetitive pulsed discharge is widely used in plasma-assisted ignition owing to its chemical activations and thermal and hydrodynamic expansions. However, the influence of ultrafast heating and hydrodynamic effects on the development of the rich-mixture ignition kernel is largely unknown. The present study aims to illustrate these effects using electrical and schlieren measurement. The number and the frequency of discharge pulses are exactly controlled to establish the relationship among the discharge energy, frequency, and rich-mixture ignition-kernel characteristics. The evolution of the ignition kernel in the early stage is mainly dominated by the discharge energy and frequency, i.e., a greater energy and a higher frequency yield a larger ignition kernel. Moreover, the influence of both the energy and frequency on the ignition kernel gradually disappears as the ignition kernel develops. According to the experimental data and theoretical analysis, the calculated laminar burning velocity is 0.319 m/s with a Markstein length of 13.43±0.11 cm when the voltage is 5.9 k V, the frequency is 3 k Hz, and the equivalence ratio is 1.3. This result indicates that the rich-mixture flame is stable in the early stage of ignition.