We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the r...We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the regeneration and functional recovery of the peripheral nerve.In the present study,we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts.Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA,TrkA-shRNA or the respective control.The cells were then seeded into allogeneic rat acellular nerve allografts for bridging a 1-cm right sciatic nerve defect.Then,8 weeks after surgery,hematoxylin and eosin staining showed that compared with the control groups,the cells and fibers in the TrkA overexpressing group were more densely and uniformly arranged,whereas they were relatively sparse and arranged in a disordered manner in the TrkA-shRNA group.Western blot assay showed that compared with the control groups,the TrkA overexpressing group had higher expression of the myelin marker,myelin basic protein and the axonal marker neurofilament 200.The TrkA overexpressing group also had higher levels of various signaling molecules,including TrkA,pTrkA(Tyr490),extracellular signal-regulated kinases 1/2(Erkl/2),pErk1/2(Thr202/Tyr204),and the anti-apoptotic proteins Bcl-2 and Bcl-xL.In contrast,these proteins were downregulated,while the pro-apoptotic factors Bax and Bad were upregulated,in the TrkA-shRNA group.The levels of the TrkA effectors Akt and pAkt(Ser473)were not different among the groups.These results suggest that TrkA enhances the survival and regenerative capacity of bone marrow stromal stem cells through upregulation of the Erk/Bcl-2 pathway.All procedures were approved by the Animal Ethical and Welfare Committee of Shenzhen University,China in December 2014(approval No.AEWC-2014-001219).展开更多
Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analys...Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression.展开更多
BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural s...BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural stem cells exhibit potential for neural regeneration. However, miRNA expression in these cells has been rarely reported. OBJECTIVE: To explore differential expression of two nervous system-specific miRNAs, miR-124 and miR-128, in bone marrow stromal cells and spinal cord-derived neural stem cells. DESIGN, TIME AND SETTING: An In vitro, cell biology experiment was performed at the Department of Biotechnology, Shanxi Medical University from June 2008 to June 2009. MATERIALS: TaqMan miRNA assays were purchased from Applied Biosystems. METHODS: Rat bone marrow stromal cells were isolated and cultured using the whole-bone marrow method, and rat spinal cord-derived neural stem cells were obtained through neurosphere formation. TaqMan miRNA assays were used to measure miR-124 and miR-128 expression in bone marrow stromal cells and spinal cord-derived neural stem cells. MAIN OUTCOME MEASURES: Morphology of bone marrow stromal cells and spinal cord-derived neural stem cells were observed by inverted microscopy. Expression of the neural stem cell-specific marker, nestin, the bone marrow stromal cell surface marker, CD71, and expression of miR-124 and miR-128, were detected by real-time polymerase chain reaction. RESULTS: Cultured bone marrow stromal cells displayed a short fusiform shape. Flow cytometry revealed a large number of CD71-positive cells (〉 95%). Cultured spinal cord-derived neural stem cells formed nestin-positive neurospheres, and quantitative detection of miRNA demonstrated that less miR-124 and miR-128 was expressed in bone marrow stromal cells compared to spinal cord-derived neural stem cells (P 〈 0.05). CONCLUSION: Bone marrow stromal cells and spinal cord-derived neural stem cells exhibited differential expression of miR-124 and miR-128, which suggested different characteristics in miRNA expression.展开更多
BACKGROUND: Embryonic neural stem cells (NSCs) have provided positive effects for the treatment of glioma. However, the source for embryonic NSCs remains limited and high amplification conditions are required. Bone...BACKGROUND: Embryonic neural stem cells (NSCs) have provided positive effects for the treatment of glioma. However, the source for embryonic NSCs remains limited and high amplification conditions are required. Bone marrow stromal cells (BMSCs) have been proposed for the treatment of glioma. OBJECTIVE: To investigate biological changes in NSCs and BMSCs following transplantation into rat models of glioma. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Embryonic Stem Cell Research Laboratory of Yunyang Medical College from February 2006 to August 2008. MATERIALS: The rat C6 glioma cell line was purchased from Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; mouse anti-bromodeoxyuridine (BrdU) monoclonal antibody and Cy3-1abeled goat anti-mouse IgG antibody was purchased from Upstate, USA. METHODS: A total of 95 Sprag6ue Dawley rats were randomly assigned to three groups: NSC (n = 35), transplanted with 〉 6 × 10^6 NSCs via left medial hind limb; BMSC (n = 35), transplanted with 〉 1 × 10^6 BMSCs via left medial hind limb; model group (n = 25), injected with the same volume of 0.1 mmol/L phosphate buffered saline. MAIN OUTCOME MEASURES: Gliomal growth and size were assessed by nuclear magnetic resonance, and glioma morphological features were observed following hematoxylin-eosin staining and BrdU immunohistochemistry 3 and 4 weeks following transplantation. RESULTS: The average survival of rats in the BMSC, NSC, and model groups was 4.03, 4.28, and 3.88 weeks. At 3 weeks, there was no significant difference in the average glioma diameter between the BMSC and model groups (P 〉 0.05). However, gliomal diameter was significantly decreased in the NSC group compared with the model group (P 〈 0.05). At 4 weeks, there was no statistical difference between the groups (P 〉 0.05). BrdU immunohistochemistry revealed that BMSCs and NSCs appeared to migrate to the gliomas. CONCLUSION: NSCs inhibited glioma cell growth and prolonged rat survival. BMSCs did not significantly suppress glioma cell growth.展开更多
Sox9 gene was cloned from immortalized precartilaginous stem cells and its eukaryotic expression vector constructed in order to explore the possibility of bone marrow-derived stromal cells differentiation into precart...Sox9 gene was cloned from immortalized precartilaginous stem cells and its eukaryotic expression vector constructed in order to explore the possibility of bone marrow-derived stromal cells differentiation into precartilaginous stem cells induced by Sox9. A full-length fragment of Sox9 was obtained by RT-PCR, inserted into pGEM-T Easy clone vector, and ligated with pEGFP-IRES2 expression vector by double digestion after sequencing. The compound plasmid was transfected into born marrow-derived stromal cells by Lipofectamine 2000, and the transfection efficacy and the expression of Sox9 and FGFR-3 were observed. Flow cytometry was used to identify the cell phenotype, and MTT was employed to assay proliferative viability of cells. Sequencing, restrictive endonuclease identification and RT-PCR confirmed that the expansion of Sox9 and construction of Sox9 expression vector were successful. After transfection of the recombinant vector into bone marrow-derived stromal cells, the expression of Sox9 and FGFR-3 was detected, and proliferative viability was not different from that of precartilaginous stem cells. It was concluded that Sox9 gene eukaryotic expression vector was successfully constructed, and the transfected bone marrow-derived stromal cells differentiated into the precartilaginous stem cells.展开更多
Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cul...Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cultured in serum-containing media. Salvia miltiorrhiza was used to induce human BMSC (hBMSC) to differentiate. BMSC were identified with immunocytochemistry. Semi-quantitative RT-PCR was used to examine mRNA expression of neurofilamentl (NF1), nestin and neuron-specific enolase (NSE) in rat BMSC (rBMSC). Rat BMSC labelled by Hoschst33258 were transplanted into striatum of rats to trace migration and distribution. Results rBMSC expressed NSE, NFI and nestin mRNA, and NF1 mRNA and expression was increased with induction of Salvia miltiorrhiza. A small number of hBMSC were stained by anti-nestin, anti-GFAP and anti-S 100. Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells. Some differentiated neuron-like cells, that expressed NSE, beta-tubulin and NF-200, showed typical neuron morphology, but some neuron-like cells also expressed alpha smooth muscle protein, making their neuron identification complicated, rBMSC could migrate and adapted in the host brains after being transplanted. Conclusion Bone marrow stromal cells could express phenotypes of neurons, and Salvia milliorrhiza could induce hBMSC to differentiate into neuron-like cells, If BMSC could be converted into neurons instead of mesenchymal derivatives, they would be an abundant and accessible cellular source to treat a variety of neurological diseases.展开更多
Summary: In order to study whether marrow stromal cells (MSCs) can be induced into nerve-like cells in vitro, and the mechanism, the MSCs in Wistar rats were isolated and cultured, and then induced with DMSO and BHA i...Summary: In order to study whether marrow stromal cells (MSCs) can be induced into nerve-like cells in vitro, and the mechanism, the MSCs in Wistar rats were isolated and cultured, and then induced with DMSO and BHA in vitro. The expression of specific marking proteins in neurons, glia and neural stem cells were detected before preinduction, at 24 h of preinduction, at 6 h, 24 h, and 48 h of neuronal induction by using immunohistochemistry and Western blotting. The ultrastructural changes after the inducement were observed. The results showed that after the inducement, many MSCs turned into bipolar, multipolar and taper, and then intersected as network structure. At the same time, some MSCs had the typical neuron-like ultrastructure. Immunohistochemistry revealed that NeuN and Nestin expression was detectable after inducement, but there was no GFAP and CNP expression. Western blotting showed the expression of Nestin was strong at 6 h of neuronal induction, and decreased at 24 h, 48 h of the induction. NeuN was detectable at 6 h of neuronal induction, and increased at 24 h, 48 h of the induction. It was concluded MSCs were induced into neural stem cells, and then differentiated into neuron-like cells in vitro.展开更多
BACKGROUND: Traumatic approaches, such as sacrifice and perfusion sampling, have been used to evaluate efficiency of stem cell transplantation. However, these methods are not applicable to human studies. Cell tracing...BACKGROUND: Traumatic approaches, such as sacrifice and perfusion sampling, have been used to evaluate efficiency of stem cell transplantation. However, these methods are not applicable to human studies. Cell tracing, in combination with non-invasive imaging technology, can be utilized to trace cell survival following transplantation to evaluate the efficacy of cell transplantation therapy. OBJECTIVE: To explore feasibility of magnetic resonance imaging (MRI) to observe in vivo repair of injured sciatic nerves following feridex and polylysine (FE-PLL) complex-labeled bone marrow stromal cell (BMSC) transplantation. DESIGN, TIME AND SE'I-rlNG: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Neurosurgery, Zhujiang Hospital from March to December 2008. MATERIALS: Feridex was purchased from Advanced Magnetic, USA, and polylysine was purchased from Sigma, USA. METHODS: BMSCs were harvested from adult rabbit femurs and were cultured in vitro with neural stem cell culture medium, leukemia inhibitory factor, and basic fibroblast growth factor. Bone marrow stromal cell-derived neural stem cells (BMSC-D-NSCs) were obtained and labeled with FE-PLL complex. The right sciatic nerve (0.8 mm) was excised from healthy, New Zealand rabbits, aged 1.5 months, and the epineuria of distal stumps underwent turnover and were anastomosed at the proximal ends. FE-PLL labeled BMSC-D-NSC suspension or culture medium was transplanted into the epineunal lumen using a microsyringe. The left sciatic nerve was left intact and sewed as the normal control. MAIN OUTCOME MEASURES: Cellular morphology, proliferation, and differentiation, as well as expression of nestin and neuron-specific enolase (NSE), of BMSCs-D-NSCs were observed. Efficacy of FE-PLL labeling and effects on cells were measured. In addition, neural regeneration at 2, 8, and 16 weeks following transplantation was observed by MRI. Histopathology and mean number of regenerated nerve fibers in the proximodistal-injured sciatic nerve were evaluated by hematoxylin and eosin and Bielschowsky staining. RESULTS: Results demonstrated that BMSCs expanded, proliferated, and differentiated into neural-like cells with slim, long processes. The cells expressed nestin and NSE, as detected by immunocytochemistry. BMSC-D-NSCs were effectively labeled by FE-PLL, with a labeling efficiency of 98%. In addition, cell viability was not influenced by the FE-PLL complex. MRI results revealed low signals in the FE-labeled BMSC-D-NSC-implanted region of the sciatic nerve. A low-signal region was observed at 2 weeks, which was widely spread at 8-16 weeks after cell transplantation. The regenerated nerve fibers were orderly arranged in the cell transplantation group and exhibited no significant differences compared with the normal control side (P 〉 0.05). CONCLUSION: BMSCs were successfully cultured in vitro, and the cells proliferated and trans-differentiated into neuronal-like cells, which expressed nestin and NSE. The FE-PLL complex effectively labeled rabbit BMSC-D-NSCs in vitro and did not affect peripheral neural regeneration following cell transplantation. Results demonstrated that MRI could be used to track FE-labeled BMSC-D-NSCs transplanted in the sciatic nerve.展开更多
Mesenchymal stem cells (MSCs) are non-hematopoietic stem cells with the capacity to differentiate into tissues of both mesenchymal and non-mesenchymal origin. MSCs can differentiate into osteoblastic, chondrogenic, an...Mesenchymal stem cells (MSCs) are non-hematopoietic stem cells with the capacity to differentiate into tissues of both mesenchymal and non-mesenchymal origin. MSCs can differentiate into osteoblastic, chondrogenic, and adipogenic lineages, although recent studies have demonstrated that MSCs are also able to differentiate into other lineages, including neuronal and cardiomyogenic lineages. Since their original isolation from the bone marrow, MSCs have been successfully harvested from many other tissues. Their ease of isolation and ex vivo expansion combined with their immunoprivileged nature has made these cells popular candidates for stem cell therapies. These cells have the potential to alter disease pathophysiology through many modalities including cytokine secretion, capacity to differentiate along various lineages, immune modulation and direct cell-cell interaction with diseased tissue. Here we first review basic features of MSC biology including MSC characteristics in culture, homing mechanisms, differentiation capabilities and immune modulation. We then highlight some in vivo and clinical evidence supporting the therapeutic roles of MSCs and their uses in orthopedic, autoimmune, and ischemic disorders.展开更多
With technological advances in basic research,the intricate mechanism of secondary delayed spinal cord injury(SCI)continues to unravel at a rapid pace.However,despite our deeper understanding of the molecular changes ...With technological advances in basic research,the intricate mechanism of secondary delayed spinal cord injury(SCI)continues to unravel at a rapid pace.However,despite our deeper understanding of the molecular changes occurring after initial insult to the spinal cord,the cure for paralysis remains elusive.Current treatment of SCI is limited to early administration of high dose steroids to mitigate the harmful effect of cord edema that occurs after SCI and to reduce the cascade of secondary delayed SCI.R ecent evident-based clinical studies have cast doubt on the clinical benefit of steroids in SCI and intense focus on stem cell-based therapy has yielded some encouraging results.An array of mesenchymal stem cells(MSCs)from various sources with novel and promising strategies are being developed to improve function after SCI.In this review,we briefly discuss the pathophysiology of spinal cord injuries and characteristics and the potential sources of MSCs that can be used in the treatment of SCI.We will discuss the progress of MSCs application in research,focusing on the neuroprotective properties of MSCs.Finally,we will discuss the results from preclinical and clinical trials involving stem cell-based therapy in SCI.展开更多
AIM:To characterize single-cell-derived mouse clonal mesenchymal stem cells (mcMSCs) established with bone marrow samples from three different mouse strains. METHODS:We established mcMSC lines using subfractionation c...AIM:To characterize single-cell-derived mouse clonal mesenchymal stem cells (mcMSCs) established with bone marrow samples from three different mouse strains. METHODS:We established mcMSC lines using subfractionation culturing method from bone marrow samples obtained from long bones.These lines were characterized by measuring cell growth, cell surface epitopes, differentiation potential, lineage-specific gene expression and T-cell suppression capability. Nonclonal MSCs isolated by the conventional gradient centrifugation method were used as controls. RESULTS:All mcMSC lines showed typical nonclonal MSC-like spindle shape morphology. Lines differed inoptimal growth density requirement.Cell surface epitope prof iles of these mcMSC lines were similar to those of nonclonal MSCs. However, some lines exhibited different expression levels in a few epitopes, such as CD44 and CD105. Differentiation assays showed that 90% of the mcMSC lines were capable of differentiating into adipogenic and/or chondrogenic lineages, but only 20% showed osteogenic lineage differentiation. T-cell suppression analysis showed that 75% of the lines exhibited T-cell suppression capability. CONCLUSION:mcMSC lines have similar cell morphology and cell growth rate but exhibit variations in their cell surface epitopes, differentiation potential, lineage-specifi c gene expression and T-cell suppression capability.展开更多
基金supported by the National Natural Science Foundation of China,No.81372041(to DW),and No.81801220(to MGZ)
文摘We previously demonstrated that overexpression of tropomyosin receptor kinase A(TrkA)promotes the survival and Schwann celllike differentiation of bone marrow stromal stem cells in nerve grafts,thereby enhancing the regeneration and functional recovery of the peripheral nerve.In the present study,we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts.Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA,TrkA-shRNA or the respective control.The cells were then seeded into allogeneic rat acellular nerve allografts for bridging a 1-cm right sciatic nerve defect.Then,8 weeks after surgery,hematoxylin and eosin staining showed that compared with the control groups,the cells and fibers in the TrkA overexpressing group were more densely and uniformly arranged,whereas they were relatively sparse and arranged in a disordered manner in the TrkA-shRNA group.Western blot assay showed that compared with the control groups,the TrkA overexpressing group had higher expression of the myelin marker,myelin basic protein and the axonal marker neurofilament 200.The TrkA overexpressing group also had higher levels of various signaling molecules,including TrkA,pTrkA(Tyr490),extracellular signal-regulated kinases 1/2(Erkl/2),pErk1/2(Thr202/Tyr204),and the anti-apoptotic proteins Bcl-2 and Bcl-xL.In contrast,these proteins were downregulated,while the pro-apoptotic factors Bax and Bad were upregulated,in the TrkA-shRNA group.The levels of the TrkA effectors Akt and pAkt(Ser473)were not different among the groups.These results suggest that TrkA enhances the survival and regenerative capacity of bone marrow stromal stem cells through upregulation of the Erk/Bcl-2 pathway.All procedures were approved by the Animal Ethical and Welfare Committee of Shenzhen University,China in December 2014(approval No.AEWC-2014-001219).
基金the Plan Program of Shenyang Science and Technology Bureau, No. 1091161-0-00
文摘Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression.
基金the National Natural Science Foundation of China, No. 30672114
文摘BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural stem cells exhibit potential for neural regeneration. However, miRNA expression in these cells has been rarely reported. OBJECTIVE: To explore differential expression of two nervous system-specific miRNAs, miR-124 and miR-128, in bone marrow stromal cells and spinal cord-derived neural stem cells. DESIGN, TIME AND SETTING: An In vitro, cell biology experiment was performed at the Department of Biotechnology, Shanxi Medical University from June 2008 to June 2009. MATERIALS: TaqMan miRNA assays were purchased from Applied Biosystems. METHODS: Rat bone marrow stromal cells were isolated and cultured using the whole-bone marrow method, and rat spinal cord-derived neural stem cells were obtained through neurosphere formation. TaqMan miRNA assays were used to measure miR-124 and miR-128 expression in bone marrow stromal cells and spinal cord-derived neural stem cells. MAIN OUTCOME MEASURES: Morphology of bone marrow stromal cells and spinal cord-derived neural stem cells were observed by inverted microscopy. Expression of the neural stem cell-specific marker, nestin, the bone marrow stromal cell surface marker, CD71, and expression of miR-124 and miR-128, were detected by real-time polymerase chain reaction. RESULTS: Cultured bone marrow stromal cells displayed a short fusiform shape. Flow cytometry revealed a large number of CD71-positive cells (〉 95%). Cultured spinal cord-derived neural stem cells formed nestin-positive neurospheres, and quantitative detection of miRNA demonstrated that less miR-124 and miR-128 was expressed in bone marrow stromal cells compared to spinal cord-derived neural stem cells (P 〈 0.05). CONCLUSION: Bone marrow stromal cells and spinal cord-derived neural stem cells exhibited differential expression of miR-124 and miR-128, which suggested different characteristics in miRNA expression.
基金Hubei Provincial Education Department Foundation, No. Q20092405Hubei Provincial Science and Technology Agency Foundation, No. 2005AA301C28Hubei Provincial Health Department Foundation, No. QJX2005-15
文摘BACKGROUND: Embryonic neural stem cells (NSCs) have provided positive effects for the treatment of glioma. However, the source for embryonic NSCs remains limited and high amplification conditions are required. Bone marrow stromal cells (BMSCs) have been proposed for the treatment of glioma. OBJECTIVE: To investigate biological changes in NSCs and BMSCs following transplantation into rat models of glioma. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Embryonic Stem Cell Research Laboratory of Yunyang Medical College from February 2006 to August 2008. MATERIALS: The rat C6 glioma cell line was purchased from Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; mouse anti-bromodeoxyuridine (BrdU) monoclonal antibody and Cy3-1abeled goat anti-mouse IgG antibody was purchased from Upstate, USA. METHODS: A total of 95 Sprag6ue Dawley rats were randomly assigned to three groups: NSC (n = 35), transplanted with 〉 6 × 10^6 NSCs via left medial hind limb; BMSC (n = 35), transplanted with 〉 1 × 10^6 BMSCs via left medial hind limb; model group (n = 25), injected with the same volume of 0.1 mmol/L phosphate buffered saline. MAIN OUTCOME MEASURES: Gliomal growth and size were assessed by nuclear magnetic resonance, and glioma morphological features were observed following hematoxylin-eosin staining and BrdU immunohistochemistry 3 and 4 weeks following transplantation. RESULTS: The average survival of rats in the BMSC, NSC, and model groups was 4.03, 4.28, and 3.88 weeks. At 3 weeks, there was no significant difference in the average glioma diameter between the BMSC and model groups (P 〉 0.05). However, gliomal diameter was significantly decreased in the NSC group compared with the model group (P 〈 0.05). At 4 weeks, there was no statistical difference between the groups (P 〉 0.05). BrdU immunohistochemistry revealed that BMSCs and NSCs appeared to migrate to the gliomas. CONCLUSION: NSCs inhibited glioma cell growth and prolonged rat survival. BMSCs did not significantly suppress glioma cell growth.
基金supported by a grant from the National Natural Sciences Foundation of China (No. 30650006)
文摘Sox9 gene was cloned from immortalized precartilaginous stem cells and its eukaryotic expression vector constructed in order to explore the possibility of bone marrow-derived stromal cells differentiation into precartilaginous stem cells induced by Sox9. A full-length fragment of Sox9 was obtained by RT-PCR, inserted into pGEM-T Easy clone vector, and ligated with pEGFP-IRES2 expression vector by double digestion after sequencing. The compound plasmid was transfected into born marrow-derived stromal cells by Lipofectamine 2000, and the transfection efficacy and the expression of Sox9 and FGFR-3 were observed. Flow cytometry was used to identify the cell phenotype, and MTT was employed to assay proliferative viability of cells. Sequencing, restrictive endonuclease identification and RT-PCR confirmed that the expansion of Sox9 and construction of Sox9 expression vector were successful. After transfection of the recombinant vector into bone marrow-derived stromal cells, the expression of Sox9 and FGFR-3 was detected, and proliferative viability was not different from that of precartilaginous stem cells. It was concluded that Sox9 gene eukaryotic expression vector was successfully constructed, and the transfected bone marrow-derived stromal cells differentiated into the precartilaginous stem cells.
基金This work was supported by Natural Science Foundation of Guangdong Province (No. 012452, No. 020001).
文摘Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cultured in serum-containing media. Salvia miltiorrhiza was used to induce human BMSC (hBMSC) to differentiate. BMSC were identified with immunocytochemistry. Semi-quantitative RT-PCR was used to examine mRNA expression of neurofilamentl (NF1), nestin and neuron-specific enolase (NSE) in rat BMSC (rBMSC). Rat BMSC labelled by Hoschst33258 were transplanted into striatum of rats to trace migration and distribution. Results rBMSC expressed NSE, NFI and nestin mRNA, and NF1 mRNA and expression was increased with induction of Salvia miltiorrhiza. A small number of hBMSC were stained by anti-nestin, anti-GFAP and anti-S 100. Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells. Some differentiated neuron-like cells, that expressed NSE, beta-tubulin and NF-200, showed typical neuron morphology, but some neuron-like cells also expressed alpha smooth muscle protein, making their neuron identification complicated, rBMSC could migrate and adapted in the host brains after being transplanted. Conclusion Bone marrow stromal cells could express phenotypes of neurons, and Salvia milliorrhiza could induce hBMSC to differentiate into neuron-like cells, If BMSC could be converted into neurons instead of mesenchymal derivatives, they would be an abundant and accessible cellular source to treat a variety of neurological diseases.
基金ThisprojectwassupportedbyagrantfromNationalNaturalSciencesFoundationofChina (No .30 0 70 82 5 )
文摘Summary: In order to study whether marrow stromal cells (MSCs) can be induced into nerve-like cells in vitro, and the mechanism, the MSCs in Wistar rats were isolated and cultured, and then induced with DMSO and BHA in vitro. The expression of specific marking proteins in neurons, glia and neural stem cells were detected before preinduction, at 24 h of preinduction, at 6 h, 24 h, and 48 h of neuronal induction by using immunohistochemistry and Western blotting. The ultrastructural changes after the inducement were observed. The results showed that after the inducement, many MSCs turned into bipolar, multipolar and taper, and then intersected as network structure. At the same time, some MSCs had the typical neuron-like ultrastructure. Immunohistochemistry revealed that NeuN and Nestin expression was detectable after inducement, but there was no GFAP and CNP expression. Western blotting showed the expression of Nestin was strong at 6 h of neuronal induction, and decreased at 24 h, 48 h of the induction. NeuN was detectable at 6 h of neuronal induction, and increased at 24 h, 48 h of the induction. It was concluded MSCs were induced into neural stem cells, and then differentiated into neuron-like cells in vitro.
基金the Natural Science Foundation of Guangdong Province, No. 7301061
文摘BACKGROUND: Traumatic approaches, such as sacrifice and perfusion sampling, have been used to evaluate efficiency of stem cell transplantation. However, these methods are not applicable to human studies. Cell tracing, in combination with non-invasive imaging technology, can be utilized to trace cell survival following transplantation to evaluate the efficacy of cell transplantation therapy. OBJECTIVE: To explore feasibility of magnetic resonance imaging (MRI) to observe in vivo repair of injured sciatic nerves following feridex and polylysine (FE-PLL) complex-labeled bone marrow stromal cell (BMSC) transplantation. DESIGN, TIME AND SE'I-rlNG: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Neurosurgery, Zhujiang Hospital from March to December 2008. MATERIALS: Feridex was purchased from Advanced Magnetic, USA, and polylysine was purchased from Sigma, USA. METHODS: BMSCs were harvested from adult rabbit femurs and were cultured in vitro with neural stem cell culture medium, leukemia inhibitory factor, and basic fibroblast growth factor. Bone marrow stromal cell-derived neural stem cells (BMSC-D-NSCs) were obtained and labeled with FE-PLL complex. The right sciatic nerve (0.8 mm) was excised from healthy, New Zealand rabbits, aged 1.5 months, and the epineuria of distal stumps underwent turnover and were anastomosed at the proximal ends. FE-PLL labeled BMSC-D-NSC suspension or culture medium was transplanted into the epineunal lumen using a microsyringe. The left sciatic nerve was left intact and sewed as the normal control. MAIN OUTCOME MEASURES: Cellular morphology, proliferation, and differentiation, as well as expression of nestin and neuron-specific enolase (NSE), of BMSCs-D-NSCs were observed. Efficacy of FE-PLL labeling and effects on cells were measured. In addition, neural regeneration at 2, 8, and 16 weeks following transplantation was observed by MRI. Histopathology and mean number of regenerated nerve fibers in the proximodistal-injured sciatic nerve were evaluated by hematoxylin and eosin and Bielschowsky staining. RESULTS: Results demonstrated that BMSCs expanded, proliferated, and differentiated into neural-like cells with slim, long processes. The cells expressed nestin and NSE, as detected by immunocytochemistry. BMSC-D-NSCs were effectively labeled by FE-PLL, with a labeling efficiency of 98%. In addition, cell viability was not influenced by the FE-PLL complex. MRI results revealed low signals in the FE-labeled BMSC-D-NSC-implanted region of the sciatic nerve. A low-signal region was observed at 2 weeks, which was widely spread at 8-16 weeks after cell transplantation. The regenerated nerve fibers were orderly arranged in the cell transplantation group and exhibited no significant differences compared with the normal control side (P 〉 0.05). CONCLUSION: BMSCs were successfully cultured in vitro, and the cells proliferated and trans-differentiated into neuronal-like cells, which expressed nestin and NSE. The FE-PLL complex effectively labeled rabbit BMSC-D-NSCs in vitro and did not affect peripheral neural regeneration following cell transplantation. Results demonstrated that MRI could be used to track FE-labeled BMSC-D-NSCs transplanted in the sciatic nerve.
基金Supported by (in part) Research Grants from the Brinson Foundation (to He TC)the Orthopaedic Research and Education Foundation (to Haydon RC and Luu HH)+3 种基金the National Institutes of Health (to He TC, Haydon RC, Luu HH and Reid RR)The 863 Program of Ministry of Science and Technology of China,#2007AA2z400 (to He TC and Deng ZL)the Natural Science Foundation of China (#30901530 to Luo X, #30800658 to Luo J,and #30772211 to Deng ZL)the Natural Science Foundation Project of Chongqing Science and Technology Commission#2008BB5396 (to Chen L) and #2009BB5060 (to Luo J)
文摘Mesenchymal stem cells (MSCs) are non-hematopoietic stem cells with the capacity to differentiate into tissues of both mesenchymal and non-mesenchymal origin. MSCs can differentiate into osteoblastic, chondrogenic, and adipogenic lineages, although recent studies have demonstrated that MSCs are also able to differentiate into other lineages, including neuronal and cardiomyogenic lineages. Since their original isolation from the bone marrow, MSCs have been successfully harvested from many other tissues. Their ease of isolation and ex vivo expansion combined with their immunoprivileged nature has made these cells popular candidates for stem cell therapies. These cells have the potential to alter disease pathophysiology through many modalities including cytokine secretion, capacity to differentiate along various lineages, immune modulation and direct cell-cell interaction with diseased tissue. Here we first review basic features of MSC biology including MSC characteristics in culture, homing mechanisms, differentiation capabilities and immune modulation. We then highlight some in vivo and clinical evidence supporting the therapeutic roles of MSCs and their uses in orthopedic, autoimmune, and ischemic disorders.
基金Supported by A grant from Illinois Neurological Institute to DHD
文摘With technological advances in basic research,the intricate mechanism of secondary delayed spinal cord injury(SCI)continues to unravel at a rapid pace.However,despite our deeper understanding of the molecular changes occurring after initial insult to the spinal cord,the cure for paralysis remains elusive.Current treatment of SCI is limited to early administration of high dose steroids to mitigate the harmful effect of cord edema that occurs after SCI and to reduce the cascade of secondary delayed SCI.R ecent evident-based clinical studies have cast doubt on the clinical benefit of steroids in SCI and intense focus on stem cell-based therapy has yielded some encouraging results.An array of mesenchymal stem cells(MSCs)from various sources with novel and promising strategies are being developed to improve function after SCI.In this review,we briefly discuss the pathophysiology of spinal cord injuries and characteristics and the potential sources of MSCs that can be used in the treatment of SCI.We will discuss the progress of MSCs application in research,focusing on the neuroprotective properties of MSCs.Finally,we will discuss the results from preclinical and clinical trials involving stem cell-based therapy in SCI.
基金Supported by A Grant from the Korea Health 21 R&D ProjectMinistry of Health and Welfare,Republic of Korea(A092142)+1 种基金a research grant from Homeo Therapy Co.Ltd.(39856-01)by the Brain Korea 21 Project in 2010
文摘AIM:To characterize single-cell-derived mouse clonal mesenchymal stem cells (mcMSCs) established with bone marrow samples from three different mouse strains. METHODS:We established mcMSC lines using subfractionation culturing method from bone marrow samples obtained from long bones.These lines were characterized by measuring cell growth, cell surface epitopes, differentiation potential, lineage-specific gene expression and T-cell suppression capability. Nonclonal MSCs isolated by the conventional gradient centrifugation method were used as controls. RESULTS:All mcMSC lines showed typical nonclonal MSC-like spindle shape morphology. Lines differed inoptimal growth density requirement.Cell surface epitope prof iles of these mcMSC lines were similar to those of nonclonal MSCs. However, some lines exhibited different expression levels in a few epitopes, such as CD44 and CD105. Differentiation assays showed that 90% of the mcMSC lines were capable of differentiating into adipogenic and/or chondrogenic lineages, but only 20% showed osteogenic lineage differentiation. T-cell suppression analysis showed that 75% of the lines exhibited T-cell suppression capability. CONCLUSION:mcMSC lines have similar cell morphology and cell growth rate but exhibit variations in their cell surface epitopes, differentiation potential, lineage-specifi c gene expression and T-cell suppression capability.