BACKGROUND: The potential application of decellularized liver scaffold for liver regeneration is limited by severe shortage of donor organs. Attempt of using heterograft scaffold is accompanied with high risks of zoo...BACKGROUND: The potential application of decellularized liver scaffold for liver regeneration is limited by severe shortage of donor organs. Attempt of using heterograft scaffold is accompanied with high risks of zoonosis and immunological rejection. We proposed that the spleen, which procured more extensively than the liver, could be an ideal source of decellularized scaffold for liver regeneration. METHODS: After harvested from donor rat, the spleen was processed by 12-hour freezing/thawing ×2 cycles, then circulation perfusion of 0.02% trypsin and 3% Triton X-100 sequentially through the splenic artery for 32 hours in total to prepare decellularized scaffold. The structure and component characteristics of the scaffold were determined by hematoxylin and eosin and immumohistochemical staining, scanning electron microscope, DNA detection, porosity measurement, biocompatibility and cytocompatibility test. Recellularization of scaffold by 5×106 bone marrow mesenchymal stem cells(BMSCs) was carried out to preliminarily evaluate the feasibility of liver regeneration by BMSCs reseeding and differentiation in decellularized splenic scaffold.RESULTS: After decellularization, a translucent scaffold, which retained the gross shape of the spleen, was generated. Histological evaluation and residual DNA quantitation revealed the remaining of extracellular matrix without nucleus and cytoplasm residue. Immunohistochemical study proved the existence of collagens I, IV, fibronectin, laminin and elastin in decellularized splenic scaffold, which showed a similarity with decellularized liver. A scanning electron microscope presented the remaining three-dimensional porous structure of extracellular matrix and small blood vessels. The poros-ity of scaffold, aperture of 45.36±4.87 μm and pore rate of 80.14%±2.99% was suitable for cell engraftment. Subcutaneous implantation of decellularized scaffold presented good histocompatibility, and recellularization of the splenic scaffold demonstrated that BMSCs could locate and survive in the decellularized matrix. CONCLUSION: Considering the more extensive organ source and satisfying biocompatibility, the present study indicated that the three-dimensional decellularized splenic scaffold might have considerable potential for liver regeneration when combined with BMSCs reseeding and differentiation.展开更多
The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ.Platelet-derived growth factor(PDGF) has been...The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ.Platelet-derived growth factor(PDGF) has been shown to promote the migration of bone marrow stromal cells;however,cytokines need to be released at a steady rate to maintain a stable concentration in vivo.Therefore,new methods are needed to maintain an optimal concentration of cytokines over an extended period of time to effectively promote seed cell localization,proliferation and differentiation.In the present study,a partition-type tubular scaffold matching the anatomical features of the thoracic 8–10 spinal cord of the rat was fabricated using chitosan and then subsequently loaded with chitosan-encapsulated PDGF-BB microspheres(PDGF-MSs).The PDGF-MS-containing scaffold was then examined in vitro for sustained-release capacity,biocompatibility,and its effect on neural progenitor cells differentiated in vitro from multilineage-differentiating stress-enduring cells(MUSE-NPCs).We found that pre-freezing for 2 hours at-20°C significantly increased the yield of partition-type tubular scaffolds,and 30 μL of 25% glutaraldehyde ensured optimal crosslinking of PDGF-MSs.The resulting PDGF-MSs cumulatively released 52% of the PDGF-BB at 4 weeks in vitro without burst release.The PDGF-MS-containing tubular scaffold showed suitable biocompatibility towards MUSE-NPCs and could promote the directional migration and growth of these cells.These findings indicate that the combination of a partition-type tubular scaffold,PDGF-MSs and MUSENPCs may be a promising model for the fabrication of tissue-engineered spinal cord grafts.展开更多
Previously we have demonstrated that calcinated antler cancellous bone(CACB) has great potential for bone defect repair,due to its highly similar composition and architecture to natural extracellular bone matrix.Thi...Previously we have demonstrated that calcinated antler cancellous bone(CACB) has great potential for bone defect repair,due to its highly similar composition and architecture to natural extracellular bone matrix.This study is aiming at seeking for an optimal strategy of combined application of CACB and bone marrow mesenchymal stem cells(BMSCs) in bone defect repair.In vitro study demonstrated that CACB promoted the adhesion,spreading and viability of BMSCs.Increased extracellular matrix production and expression of osteogenic markers in BMSCs were observed when seeded on CACB scaffolds.The cells ceased to proliferation in the dual effect of CACB and osteogenic induction at the early stage of incubation.Hence synergistic effect of CACB combined with autologous undifferentiated BMSCs in rabbit mandible critical-sized defect repair was further evaluated.Histological analysis results showed that loading the CACB with autologous BMSCs resulted in enhanced new bone formation and angiogenesis when compared with implanted CACB alone.These findings indicate that the combination of CACB and autologous BMSCs should become potential routes to improve bone repair efficiency展开更多
基金supported by a grant from the Specialized Research Fund for the Doctoral Program of Higher Education of China(20110201130009)
文摘BACKGROUND: The potential application of decellularized liver scaffold for liver regeneration is limited by severe shortage of donor organs. Attempt of using heterograft scaffold is accompanied with high risks of zoonosis and immunological rejection. We proposed that the spleen, which procured more extensively than the liver, could be an ideal source of decellularized scaffold for liver regeneration. METHODS: After harvested from donor rat, the spleen was processed by 12-hour freezing/thawing ×2 cycles, then circulation perfusion of 0.02% trypsin and 3% Triton X-100 sequentially through the splenic artery for 32 hours in total to prepare decellularized scaffold. The structure and component characteristics of the scaffold were determined by hematoxylin and eosin and immumohistochemical staining, scanning electron microscope, DNA detection, porosity measurement, biocompatibility and cytocompatibility test. Recellularization of scaffold by 5×106 bone marrow mesenchymal stem cells(BMSCs) was carried out to preliminarily evaluate the feasibility of liver regeneration by BMSCs reseeding and differentiation in decellularized splenic scaffold.RESULTS: After decellularization, a translucent scaffold, which retained the gross shape of the spleen, was generated. Histological evaluation and residual DNA quantitation revealed the remaining of extracellular matrix without nucleus and cytoplasm residue. Immunohistochemical study proved the existence of collagens I, IV, fibronectin, laminin and elastin in decellularized splenic scaffold, which showed a similarity with decellularized liver. A scanning electron microscope presented the remaining three-dimensional porous structure of extracellular matrix and small blood vessels. The poros-ity of scaffold, aperture of 45.36±4.87 μm and pore rate of 80.14%±2.99% was suitable for cell engraftment. Subcutaneous implantation of decellularized scaffold presented good histocompatibility, and recellularization of the splenic scaffold demonstrated that BMSCs could locate and survive in the decellularized matrix. CONCLUSION: Considering the more extensive organ source and satisfying biocompatibility, the present study indicated that the three-dimensional decellularized splenic scaffold might have considerable potential for liver regeneration when combined with BMSCs reseeding and differentiation.
基金supported by the Natural Science Foundation of China,No.81501610,81350030the Priority Academic Program Development of Jiangsu Higher Education Institutes of China
文摘The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ.Platelet-derived growth factor(PDGF) has been shown to promote the migration of bone marrow stromal cells;however,cytokines need to be released at a steady rate to maintain a stable concentration in vivo.Therefore,new methods are needed to maintain an optimal concentration of cytokines over an extended period of time to effectively promote seed cell localization,proliferation and differentiation.In the present study,a partition-type tubular scaffold matching the anatomical features of the thoracic 8–10 spinal cord of the rat was fabricated using chitosan and then subsequently loaded with chitosan-encapsulated PDGF-BB microspheres(PDGF-MSs).The PDGF-MS-containing scaffold was then examined in vitro for sustained-release capacity,biocompatibility,and its effect on neural progenitor cells differentiated in vitro from multilineage-differentiating stress-enduring cells(MUSE-NPCs).We found that pre-freezing for 2 hours at-20°C significantly increased the yield of partition-type tubular scaffolds,and 30 μL of 25% glutaraldehyde ensured optimal crosslinking of PDGF-MSs.The resulting PDGF-MSs cumulatively released 52% of the PDGF-BB at 4 weeks in vitro without burst release.The PDGF-MS-containing tubular scaffold showed suitable biocompatibility towards MUSE-NPCs and could promote the directional migration and growth of these cells.These findings indicate that the combination of a partition-type tubular scaffold,PDGF-MSs and MUSENPCs may be a promising model for the fabrication of tissue-engineered spinal cord grafts.
基金supported by the National Natural Science Foundation of China(Nos.81425007,51502006)the National High-tech R&D Program of China(No.2015AA033601)Beijing Municipal Science & Technology Commission Projects(No. Z161100000116033)
文摘Previously we have demonstrated that calcinated antler cancellous bone(CACB) has great potential for bone defect repair,due to its highly similar composition and architecture to natural extracellular bone matrix.This study is aiming at seeking for an optimal strategy of combined application of CACB and bone marrow mesenchymal stem cells(BMSCs) in bone defect repair.In vitro study demonstrated that CACB promoted the adhesion,spreading and viability of BMSCs.Increased extracellular matrix production and expression of osteogenic markers in BMSCs were observed when seeded on CACB scaffolds.The cells ceased to proliferation in the dual effect of CACB and osteogenic induction at the early stage of incubation.Hence synergistic effect of CACB combined with autologous undifferentiated BMSCs in rabbit mandible critical-sized defect repair was further evaluated.Histological analysis results showed that loading the CACB with autologous BMSCs resulted in enhanced new bone formation and angiogenesis when compared with implanted CACB alone.These findings indicate that the combination of CACB and autologous BMSCs should become potential routes to improve bone repair efficiency