Supersonic flows around parachute two-body systems are numerically investigated by solving the compressible Navier-Stokes equations. In the present study, both rigid and flexible parachute models are considered, which...Supersonic flows around parachute two-body systems are numerically investigated by solving the compressible Navier-Stokes equations. In the present study, both rigid and flexible parachute models are considered, which comprise a capsule and a canopy. The objective of the present study is to investigate the effects of the Martian atmosphere on the unsteady flows produced by these parachute two-body models and the structural behavior of the flexible canopy. It was found that in the Martian atmosphere, the supersonic rigid parachutes with shorter trailing distances exhibited weaker aerodynamic interactions between the capsule wake and canopy shock, resulting in a smaller pressure distribution on the typical surfaces of the canopy. By contrast, because the flow modes around the flexible parachute in the Martian atmosphere were similar to those of the rigid parachute under the air conditions of the wind tunnel tests, the canopy shape was almost unchanged. When a new canopy material was designed by decreasing the Young’s modulus and damping coefficient, an area oscillation phenomenon was observed in the flexible parachute with a trailing distance of 10 in the Martian atmosphere. Consequently, the Martian atmosphere(low density and pressure) has a significant effect on the aerodynamic performance of the flexible parachute system.展开更多
Mars is the terrestrial planet in the solar system that is closest to the Earth.Studying the atmospheric parameters of Mars and studying the evolutionary history of the Martian environment on this basis is helpful for...Mars is the terrestrial planet in the solar system that is closest to the Earth.Studying the atmospheric parameters of Mars and studying the evolutionary history of the Martian environment on this basis is helpful for people to discover signs of extraterrestrial life and to study the trend of climate change on Earth.Mie–Rayleigh scattering lidar is an important technology for detecting parameters from the surface to the middle and upper atmosphere.Because of the different aerosol distributions,Mie scattering and Rayleigh scattering have their own optimal detection ranges.Given the long period and high cost of any deep space exploration program,it is important to conduct sufficient feasibility studies and parameter simulations before the payload is launched.In this study,a parameterized lidar mathematical model and Earth’s atmospheric mode are used to compare with the measured signals of ground-based Mie–Rayleigh scattering lidar,and the correctness of the lidar mathematical model is verified.Using the model,we select the landing area of Tianwen-1 and substitute it into the Martian atmospheric mode,and then the Mie–Rayleigh lidar backscattering signal and the key parameters of the lidar system are systematically analyzed under the conditions of a clean Martian atmosphere and a global sandstorm.In addition,the optimal detection altitude ranges of Mie scattering and Rayleigh scattering on Mars under different atmospheric conditions are obtained,which provides a reference for the practical design and development of the subsequent lidar system for the Martian atmospheric environment.展开更多
Profiles of the Martian dayside ionosphere can be used to derive the neutral atmospheric densities at 130 km,which can also be obtained from the Mars Climate Database(MCD)and spacecraft aerobraking observations.In thi...Profiles of the Martian dayside ionosphere can be used to derive the neutral atmospheric densities at 130 km,which can also be obtained from the Mars Climate Database(MCD)and spacecraft aerobraking observations.In this research,we explain the method used to calculate neutral densities at 130 km via ionosphere observations and three long-period 130-km neutral density data sets at northern high latitudes(latitudes>60°)acquired through ionospheric data measured by the Mars Global Surveyor(MGS)Radio Occultation Experiment.The calculated 130-km neutral density data,along with 130-km density data from the aerobraking observations of the MGS and Mars Odyssey(ODY)in the northern high latitudes,were compared with MCD outputs at the same latitude,longitude,altitude,solar latitude,and local time.The 130-km density data derived from both the ionospheric profiles and aerobraking observations were found to show seasonal variations similar to those in the MCD data.With a negative shift of about 2×10^10 cm^−3,the corrected 130-km neutral densities derived from MCD v4.3 were consistent with those obtained from the two different observations.This result means that(1)the method used to derive the 130-km neutral densities with ionospheric profiles was effective,(2)the MCD v4.3 data sets generally overestimated the 130-km neutral densities at high latitudes,and(3)the neutral density observations from the MGS Radio Science Experiment could be used to calibrate a new atmospheric model of Mars.展开更多
In recent studies of the Martian atmosphere,strong diurnal variation in the dust was discovered in the southern hemisphere during major dust storms,which provides strong evidence that the commonly recognized meridiona...In recent studies of the Martian atmosphere,strong diurnal variation in the dust was discovered in the southern hemisphere during major dust storms,which provides strong evidence that the commonly recognized meridional transport process is driven by thermal tides.This process,when coupled with deep convection,could be an important part of the short-term atmospheric dynamics of water escape.However,the potential of this process to alter the horizontal distribution of moist air has not been systematically investigated.In this work,we conducted pre-research on the horizontal transport of water vapor associated with the migrating diurnal tide(DW1)at 50 Pa in the upper troposphere during major dust storms based on the Mars Climate Database(MCD)5.3,a state-of-the-art database for Martian atmospheric research that has been validated as simulating the relevant short-period atmospheric dynamics well.We found westward-propagating diurnal patterns in the global water vapor front during nearly all the major dust storms from Martian years(MYs)24 to 32.Statistical and correlation analyses showed that the diurnal transport of water vapor during global and A-season regional dust storms is dominated by the DW1.The effect of the tidal transport of water vapor varies with the types of dust storms in different seasons.During regional dust storms,the tidal transport induces only limited diurnal motion of the water vapor.However,the horizontal tidal wind tends to increase the abundance of daytime water vapor at mid-to low latitudes during the MY 28 southern summer global dust storm while decreasing it during the MY 25 southern spring global dust storm.The tidal transport process during these two global dust storms can induce opposite effects on water escape.展开更多
The Tianwen-1 Mars entry vehicle successfully landed on the surface of Mars in southern Utopia Planitia on May 15,2021,at 7:18(UTC+8).To acquire valuable Martian flight data,a scientific instrumentation package consis...The Tianwen-1 Mars entry vehicle successfully landed on the surface of Mars in southern Utopia Planitia on May 15,2021,at 7:18(UTC+8).To acquire valuable Martian flight data,a scientific instrumentation package consisting of a flush air data system and a multilayer temperature-sensing system was installed aboard the entry vehicle.A combined approach was applied in the entry,descent,and landing trajectory reconstruction using all available data obtained by the inertial measurement unit and the flush air data system.An aerodynamic database covering the entire flight regime was generated using computational fluid dynamics methods to assist in the reconstruction process.A preliminary analysis of the trajectory reconstruction result,along with the atmosphere reconstruction and aerodynamic performance,was conducted.The results show that the trajectory agrees closely with the nominal trajectory and the wind-relative attitude.Suspected wind occurred at the end of the trajectory.展开更多
China’s Mars exploration mission has stimulated tremendous interest in planetary science exploration recently.To propose potential scientific research projects,this study presents a concept simulation for the measure...China’s Mars exploration mission has stimulated tremendous interest in planetary science exploration recently.To propose potential scientific research projects,this study presents a concept simulation for the measurement of Martian atmospheric winds using the Doppler Michelson interferometry technique.The simulation is based on the satellite instrument initially designed for the Dynamic Atmosphere Mars Observer(DYNAMO)project to measure vertical profiles of winds from the 1.27μm airglow observations in the Martian atmosphere.A comprehensive DYNAMO measurement simulation forward model based on an orbit submodel,an atmospheric background field submodel,and an instrument submodel is developed using the Michelson equation.The simulated interferogram signal over the field of view(FOV)calculated by the forward model is associated with the filter transmittance function,column emission rate of airglow,wind velocity,temperature,and the Michelson phase.The agreement between the derived atmospheric signals from the simulated interferogram without altitude inversion and the input parameters used to initiate the forward model confirms the validity of the forward model.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.11702332 and 12072377)the Natural Science Foundation of Hunan Province,China(No.2018JJ3627)。
文摘Supersonic flows around parachute two-body systems are numerically investigated by solving the compressible Navier-Stokes equations. In the present study, both rigid and flexible parachute models are considered, which comprise a capsule and a canopy. The objective of the present study is to investigate the effects of the Martian atmosphere on the unsteady flows produced by these parachute two-body models and the structural behavior of the flexible canopy. It was found that in the Martian atmosphere, the supersonic rigid parachutes with shorter trailing distances exhibited weaker aerodynamic interactions between the capsule wake and canopy shock, resulting in a smaller pressure distribution on the typical surfaces of the canopy. By contrast, because the flow modes around the flexible parachute in the Martian atmosphere were similar to those of the rigid parachute under the air conditions of the wind tunnel tests, the canopy shape was almost unchanged. When a new canopy material was designed by decreasing the Young’s modulus and damping coefficient, an area oscillation phenomenon was observed in the flexible parachute with a trailing distance of 10 in the Martian atmosphere. Consequently, the Martian atmosphere(low density and pressure) has a significant effect on the aerodynamic performance of the flexible parachute system.
基金financial support from the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41030000)the National Natural Science Foundation of China (Grant Nos. 42125402, 42188101, 42304165, and 42374182)+2 种基金the Key-Area Research and Development Program of Guangdong Province (Grant No. 2020B0303020001)the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0300302)
文摘Mars is the terrestrial planet in the solar system that is closest to the Earth.Studying the atmospheric parameters of Mars and studying the evolutionary history of the Martian environment on this basis is helpful for people to discover signs of extraterrestrial life and to study the trend of climate change on Earth.Mie–Rayleigh scattering lidar is an important technology for detecting parameters from the surface to the middle and upper atmosphere.Because of the different aerosol distributions,Mie scattering and Rayleigh scattering have their own optimal detection ranges.Given the long period and high cost of any deep space exploration program,it is important to conduct sufficient feasibility studies and parameter simulations before the payload is launched.In this study,a parameterized lidar mathematical model and Earth’s atmospheric mode are used to compare with the measured signals of ground-based Mie–Rayleigh scattering lidar,and the correctness of the lidar mathematical model is verified.Using the model,we select the landing area of Tianwen-1 and substitute it into the Martian atmospheric mode,and then the Mie–Rayleigh lidar backscattering signal and the key parameters of the lidar system are systematically analyzed under the conditions of a clean Martian atmosphere and a global sandstorm.In addition,the optimal detection altitude ranges of Mie scattering and Rayleigh scattering on Mars under different atmospheric conditions are obtained,which provides a reference for the practical design and development of the subsequent lidar system for the Martian atmospheric environment.
基金funded by the National Science Foundation of China(NSFC,no.41674175)supported by the preresearch Project on Civil Aerospace Technologies(no.D020105)funded by the China National Space Administration.
文摘Profiles of the Martian dayside ionosphere can be used to derive the neutral atmospheric densities at 130 km,which can also be obtained from the Mars Climate Database(MCD)and spacecraft aerobraking observations.In this research,we explain the method used to calculate neutral densities at 130 km via ionosphere observations and three long-period 130-km neutral density data sets at northern high latitudes(latitudes>60°)acquired through ionospheric data measured by the Mars Global Surveyor(MGS)Radio Occultation Experiment.The calculated 130-km neutral density data,along with 130-km density data from the aerobraking observations of the MGS and Mars Odyssey(ODY)in the northern high latitudes,were compared with MCD outputs at the same latitude,longitude,altitude,solar latitude,and local time.The 130-km density data derived from both the ionospheric profiles and aerobraking observations were found to show seasonal variations similar to those in the MCD data.With a negative shift of about 2×10^10 cm^−3,the corrected 130-km neutral densities derived from MCD v4.3 were consistent with those obtained from the two different observations.This result means that(1)the method used to derive the 130-km neutral densities with ionospheric profiles was effective,(2)the MCD v4.3 data sets generally overestimated the 130-km neutral densities at high latitudes,and(3)the neutral density observations from the MGS Radio Science Experiment could be used to calibrate a new atmospheric model of Mars.
基金This work is supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(grant XDB41000000)the pre-research project on Civil Aerospace Technologies of the China National Space Administration(grant D020105).T.L.and J.C.acknowledge support from the National Natural Science Foundation of China through grants 41525015 and 41774186 to J.C.,and grants 41674149 and 41974175 to T.L.X.Z.acknowledges support from the National Science Foundation(grant AST1740921).J.L.acknowledges support from the Open Research Program of the Chinese Academy of Sciences Key Laboratory of Geospace Environment.Z.W.acknowledges support from the Guangdong Basic and Applied Basic Research Foundation(grant 2019A1515110815)the Chinese Academy of Sciences Key Laboratory of Lunar and Deep Space Exploration(grant LDSE201803).We would like to thank the MCD teams for making the MCD 5.3 data sets available online at http://www-mars.lmd.jussieu.fr/mars/access.html.
文摘In recent studies of the Martian atmosphere,strong diurnal variation in the dust was discovered in the southern hemisphere during major dust storms,which provides strong evidence that the commonly recognized meridional transport process is driven by thermal tides.This process,when coupled with deep convection,could be an important part of the short-term atmospheric dynamics of water escape.However,the potential of this process to alter the horizontal distribution of moist air has not been systematically investigated.In this work,we conducted pre-research on the horizontal transport of water vapor associated with the migrating diurnal tide(DW1)at 50 Pa in the upper troposphere during major dust storms based on the Mars Climate Database(MCD)5.3,a state-of-the-art database for Martian atmospheric research that has been validated as simulating the relevant short-period atmospheric dynamics well.We found westward-propagating diurnal patterns in the global water vapor front during nearly all the major dust storms from Martian years(MYs)24 to 32.Statistical and correlation analyses showed that the diurnal transport of water vapor during global and A-season regional dust storms is dominated by the DW1.The effect of the tidal transport of water vapor varies with the types of dust storms in different seasons.During regional dust storms,the tidal transport induces only limited diurnal motion of the water vapor.However,the horizontal tidal wind tends to increase the abundance of daytime water vapor at mid-to low latitudes during the MY 28 southern summer global dust storm while decreasing it during the MY 25 southern spring global dust storm.The tidal transport process during these two global dust storms can induce opposite effects on water escape.
基金The authors are grateful to Ying Li for extraction of the raw pressure and temperature data,Fajun Yi for calibration of pressure sensors,Minwen Guo for providing inertial data,and Francois Forget and Millour Ehouarn for collaboration in the Martian atmospheric model.
文摘The Tianwen-1 Mars entry vehicle successfully landed on the surface of Mars in southern Utopia Planitia on May 15,2021,at 7:18(UTC+8).To acquire valuable Martian flight data,a scientific instrumentation package consisting of a flush air data system and a multilayer temperature-sensing system was installed aboard the entry vehicle.A combined approach was applied in the entry,descent,and landing trajectory reconstruction using all available data obtained by the inertial measurement unit and the flush air data system.An aerodynamic database covering the entire flight regime was generated using computational fluid dynamics methods to assist in the reconstruction process.A preliminary analysis of the trajectory reconstruction result,along with the atmosphere reconstruction and aerodynamic performance,was conducted.The results show that the trajectory agrees closely with the nominal trajectory and the wind-relative attitude.Suspected wind occurred at the end of the trajectory.
基金This work was supported by the Pre-Research Project on Civil Aerospace Technologies Funded by China’s National Space Administration(Grant No.D020105)the National Natural Science Foundation of China(Grant Nos.41904142,41774164,42030202,41822403,41774165,41774161)+1 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)Youth Innovation Promotion Association CAS.W.Ward acknowledges support from the Canadian Space Agency and the National Science and Engineering Council(NSERC)of Canada.
文摘China’s Mars exploration mission has stimulated tremendous interest in planetary science exploration recently.To propose potential scientific research projects,this study presents a concept simulation for the measurement of Martian atmospheric winds using the Doppler Michelson interferometry technique.The simulation is based on the satellite instrument initially designed for the Dynamic Atmosphere Mars Observer(DYNAMO)project to measure vertical profiles of winds from the 1.27μm airglow observations in the Martian atmosphere.A comprehensive DYNAMO measurement simulation forward model based on an orbit submodel,an atmospheric background field submodel,and an instrument submodel is developed using the Michelson equation.The simulated interferogram signal over the field of view(FOV)calculated by the forward model is associated with the filter transmittance function,column emission rate of airglow,wind velocity,temperature,and the Michelson phase.The agreement between the derived atmospheric signals from the simulated interferogram without altitude inversion and the input parameters used to initiate the forward model confirms the validity of the forward model.