This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical m...This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.展开更多
基金Supported by the Natural Science Foundation of China(60974144)the Foundation for Doctors of Tianjin Normal university(52LX34)Development Program in the Science Research Project for Colleges and Universities of Tianjin of China(20100813)
基金supported by the National Natural Science Foundation of China(6127312660904032)the Natural Science Foundation of Guangdong Province(10251064101000008)
文摘This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.
基金Supported by National Natural Science Foundation of China(10571036)the Key Discipline Development Program of Beijing Municipal Commission (XK100080537)