The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy.The key to developing novel processes and improving traditional routes li...The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy.The key to developing novel processes and improving traditional routes lies in the thermodynamic data.In this study,the equilibrium phase relations for the Fe_(2)O_(3)-TiO_(2)-V_(2)O_(5)system at 1200℃in air were investigated using a high-temperature equilibrium-quenching technique,followed by analysis using scanning electron microscopy-energy dispersive X-ray spectrometer and X-ray photoelectron spectroscopy.One liquid-phase region,two two-phase regions(liquid-rutile and liquid-ferropseudobrookite),and one three-phase region(liquid-rutile-ferropseudobrookite)were determined.The variation in the TiO_(2)and V_(2)O_(5)contents with the Fe_(2)O_(3)content was examined for rutile and ferropseudobrookite solid solutions.However,on further comparison with the predictions of FactSage 8.1,significant discrepancies were identified,highlighting that greater attention must be paid to updating the current thermodynamic database related to vanadium-bearing slag systems.展开更多
In this paper, the problem of finding exact solutions to the magnetohydrodynamic(MHD) equations in the presence of incompressible mass flows with helical symmetry is considered. For ideal flows, a similarity reduction...In this paper, the problem of finding exact solutions to the magnetohydrodynamic(MHD) equations in the presence of incompressible mass flows with helical symmetry is considered. For ideal flows, a similarity reduction method is used to obtain exact solutions for several MHD flows with nonlinear variable Mach number. For resistive flows parallel to a magnetic field, the governing equilibrium equation is derived. The MHD equilibrium state of a helically symmetric incompressible flow is governed by a second-order elliptic partial differential equation(PDE) for the helical magnetic flux function. Exact solutions for the latter equation are obtained. Also, the equilibrium equations of a gravitating plasma with incompressible flow are derived.展开更多
Food safety is a major issue to public health and have attracted global attention.Fast,sensitive,and reliable detection methods for food hazardous substances is highly desirable.Aptamers which can bind to the target m...Food safety is a major issue to public health and have attracted global attention.Fast,sensitive,and reliable detection methods for food hazardous substances is highly desirable.Aptamers which can bind to the target molecules with high affinity and specificity represent an attractive tool for the recognition of food hazardous substances,which play an important role in the development and application of new food safety detection technology.But current assays for characterizing small molecule-aptamer binding are limited by either the mass sensitivity or the size differentiation ability.Herein,we proposed a comprehensive method for assessing the dissociation equilibria of small molecule-aptamer,which is immobilized-free under ambient conditions.The design employs the Le Chatelier’s principle and could be used to effectively measure small molecule-aptamer interactions.ATP binding aptamer and anti-aflatoxin B1 aptamer were used as the model system to determine their affinity,in which their dissociation equilibria measurements are in excellent close to their previous work.Due to the simplicity and sensitivity of this new method,we believe that it could be recommended as an effective tool for characterizing small molecule-aptamer interactions and promote the further application of small molecular aptamer in food safety.展开更多
Buruli ulcer is the third most common mycobacterial disease worldwide, posing a significant public health burden, especially in impoverished regions of West and Central Africa, such as Benin. The management of Buruli ...Buruli ulcer is the third most common mycobacterial disease worldwide, posing a significant public health burden, especially in impoverished regions of West and Central Africa, such as Benin. The management of Buruli ulcer (BU) in Africa is often hindered by limited resources, delays in treatment, and inadequate medical facilities. Additionally, a portion of the population does not seek hospital care, which facilitates the continued presence of the pathogen in the environment. This paper aims to investigate the role of environmental factors in the transmission of Buruli ulcer. We develop a mathematical model to describe the dynamics of Buruli ulcer transmission, incorporating the presence of the bacterium in the environment. Theoretical results are presented to demonstrate that the model is well-posed. We compute the equilibria, including the disease-free equilibrium and the endemic equilibrium, and study their stability. To achieve this, we derive a threshold parameter called the basic reproduction number ℛ0, which determines whether the disease will persist in a human population. If ℛ0is less than one, the disease will eventually die out;if ℛ0is greater than one, the disease will persist. Sensitivity analysis is performed to understand the impact of various parameters on the dynamics of Buruli ulcer transmission and to identify the parameters that influence the basic reproduction number ℛ0. Finally, numerical simulations are conducted to validate the theoretical results obtained from the mathematical analysis.展开更多
Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for t...Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for the minimization of internal Gibbs energy preliminarily when solving deoxidation equilibria.The elimination of internal Gibbs energy minimization is particularly advantageous during the coupling of deoxidation equilibrium calculations with computationally intensive approaches,such as computational fluid dynamics.The model enables efficient calculations through direct embedment of the explicit forms of activity coefficient in the computing code.The proposed thermodynamic model was developed using a quasichemical approach with two key approximations:random mixing of metallic elements(Fe and oxidizing metal) and strong nonrandom pairing of metal and oxygen as nearest neighbors.Through these approximations,the quasichemical approach yielded the activity coefficients of solutes as explicit functions of composition and temperature without requiring the minimization of internal Gibbs energy or the coupling of separate programs.The model was successfully applied in the calculation of deoxidation equilibria of various elements(Al,B,C,Ca,Ce,Cr,La,Mg,Mn,Nb,Si,Ti,V,and Zr).The limitations of the model arising from these assumptions were also discussed.展开更多
In this article VLE data for a ternary system (propylene-methanol-water) under 30~60 C,0. 3~0. 9 MPa with a mass ratio of methanol to water of 9:1, 8: 2, 7: 3 were determined with a static equilibrium still, and wer...In this article VLE data for a ternary system (propylene-methanol-water) under 30~60 C,0. 3~0. 9 MPa with a mass ratio of methanol to water of 9:1, 8: 2, 7: 3 were determined with a static equilibrium still, and were correlated by using Peng-Robinson model. The average relative error ofpropylene concentration in liquid phase is 1. 46 %. The results indicate that the models are very suitablefor the ternary system and the data are reliable.展开更多
The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A se...The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.展开更多
In this paper, the optimal variational generalized Nash equilibrium(v-GNE) seeking problem in merely monotone games with linearly coupled cost functions is investigated, in which the feasible strategy domain of each a...In this paper, the optimal variational generalized Nash equilibrium(v-GNE) seeking problem in merely monotone games with linearly coupled cost functions is investigated, in which the feasible strategy domain of each agent is coupled through an affine constraint. A distributed algorithm based on the hybrid steepest descent method is first proposed to seek the optimal v-GNE. Then, an accelerated algorithm with relaxation is proposed and analyzed, which has the potential to further improve the convergence speed to the optimal v-GNE. Some sufficient conditions in both algorithms are obtained to ensure the global convergence towards the optimal v-GNE. To illustrate the performance of the algorithms, numerical simulation is conducted based on a networked Nash-Cournot game with bounded market capacities.展开更多
It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For inst...It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For instance, both Tmag c and β of the Ni3Pt (L12) and NiPt (L10) and Tmag <sub>c of the CoPt (L10) and CoPt3 (L12) ordered compounds are strongly depressed due to the ordering compared with those of the metastable disordered Ni-Pt and Co-Pt alloys. On the other hand, the γ’-FeNi3 (L12) and the α’-FeCo (B2) ordered compounds have higher Tmag <sub>c and β values comparing with the disordered solution phases, γ (A1) and α (A2), respectively. In consequence, the stability of the ordered phase is depressed or enhanced due to the interaction between the chemical and magnetic ordering caused by the decrease or increase of Tmag <sub>c and β values. The purpose of this study is to investigate the effect of the interaction between the chemical and the magnetic ordering on the phase equilibria in the Fe-X(X=Al, Co, Ni, Rh, Si) binary systems.The Gibbs energy of the α(A2), γ(A1) and liquid phases is described by a sub-regular solution approximation. The ordering contribution to the Gibbs energy ,ΔGorder <sub>m, and deviations of magnetic properties, ΔTmag <sub>c and Δβ, of the ordered compounds, FeAl (B2), Fe3Al (D03), FeCo (B2), FeRh (B2), FeSi (B2), Fe3Si (D03) and FeNi3 (L12) is introduced by the split compound energy formalism. Effect of the interaction between the chemical ordering, B2, D03 and L12 and the magnetic ordering on the phase equilibria will be discussed according to the calculated phase diagrams of the Fe-X binary systems.展开更多
To determine the liquid-solid phase equilibria of the Nb-Si-Ti ternary system, Nb-Si-Ti alloys of different compositions are prepared. By means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and el...To determine the liquid-solid phase equilibria of the Nb-Si-Ti ternary system, Nb-Si-Ti alloys of different compositions are prepared. By means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA), the phases in the alloys, such as Si-based solutions, Ti(Nb)Si, Ti(Nb)Si2, Nb(Ti)Si2, Ti(Nb)5Si4, Nb(Ti)5Si3, Ti(Nb)5Si3, Nb(Ti)3Si and Nb-based solutions are identified, and the phase evolution is analyzed. As a result, the microstmctural and microchemical evidence provides a clear definition of the Nb-Si-Ti liquidus surface projection and indicates that the ternary phase diagram has seven transition reactions.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52204310)the China Postdoctoral Science Foundation(Nos.2020TQ0059 and 2020M570967)+3 种基金the Natural Science Foundation of Liaoning Province,China(No.2021-MS-083)the Fundamental Research Funds for the Central Universities(No.N2125010)the Open Project Program of Key Laboratory of Metallurgical Emission Reduction&Resources Recycling(Anhui University of Technology)of Ministry of Education(No.JKF22-02)the Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education.
文摘The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy.The key to developing novel processes and improving traditional routes lies in the thermodynamic data.In this study,the equilibrium phase relations for the Fe_(2)O_(3)-TiO_(2)-V_(2)O_(5)system at 1200℃in air were investigated using a high-temperature equilibrium-quenching technique,followed by analysis using scanning electron microscopy-energy dispersive X-ray spectrometer and X-ray photoelectron spectroscopy.One liquid-phase region,two two-phase regions(liquid-rutile and liquid-ferropseudobrookite),and one three-phase region(liquid-rutile-ferropseudobrookite)were determined.The variation in the TiO_(2)and V_(2)O_(5)contents with the Fe_(2)O_(3)content was examined for rutile and ferropseudobrookite solid solutions.However,on further comparison with the predictions of FactSage 8.1,significant discrepancies were identified,highlighting that greater attention must be paid to updating the current thermodynamic database related to vanadium-bearing slag systems.
文摘In this paper, the problem of finding exact solutions to the magnetohydrodynamic(MHD) equations in the presence of incompressible mass flows with helical symmetry is considered. For ideal flows, a similarity reduction method is used to obtain exact solutions for several MHD flows with nonlinear variable Mach number. For resistive flows parallel to a magnetic field, the governing equilibrium equation is derived. The MHD equilibrium state of a helically symmetric incompressible flow is governed by a second-order elliptic partial differential equation(PDE) for the helical magnetic flux function. Exact solutions for the latter equation are obtained. Also, the equilibrium equations of a gravitating plasma with incompressible flow are derived.
基金supported by the National Key R&D Program of China(2017YFC1600603)the Funds for Huangshan Professorship of Hefei University of Technology(407-037019).
文摘Food safety is a major issue to public health and have attracted global attention.Fast,sensitive,and reliable detection methods for food hazardous substances is highly desirable.Aptamers which can bind to the target molecules with high affinity and specificity represent an attractive tool for the recognition of food hazardous substances,which play an important role in the development and application of new food safety detection technology.But current assays for characterizing small molecule-aptamer binding are limited by either the mass sensitivity or the size differentiation ability.Herein,we proposed a comprehensive method for assessing the dissociation equilibria of small molecule-aptamer,which is immobilized-free under ambient conditions.The design employs the Le Chatelier’s principle and could be used to effectively measure small molecule-aptamer interactions.ATP binding aptamer and anti-aflatoxin B1 aptamer were used as the model system to determine their affinity,in which their dissociation equilibria measurements are in excellent close to their previous work.Due to the simplicity and sensitivity of this new method,we believe that it could be recommended as an effective tool for characterizing small molecule-aptamer interactions and promote the further application of small molecular aptamer in food safety.
文摘Buruli ulcer is the third most common mycobacterial disease worldwide, posing a significant public health burden, especially in impoverished regions of West and Central Africa, such as Benin. The management of Buruli ulcer (BU) in Africa is often hindered by limited resources, delays in treatment, and inadequate medical facilities. Additionally, a portion of the population does not seek hospital care, which facilitates the continued presence of the pathogen in the environment. This paper aims to investigate the role of environmental factors in the transmission of Buruli ulcer. We develop a mathematical model to describe the dynamics of Buruli ulcer transmission, incorporating the presence of the bacterium in the environment. Theoretical results are presented to demonstrate that the model is well-posed. We compute the equilibria, including the disease-free equilibrium and the endemic equilibrium, and study their stability. To achieve this, we derive a threshold parameter called the basic reproduction number ℛ0, which determines whether the disease will persist in a human population. If ℛ0is less than one, the disease will eventually die out;if ℛ0is greater than one, the disease will persist. Sensitivity analysis is performed to understand the impact of various parameters on the dynamics of Buruli ulcer transmission and to identify the parameters that influence the basic reproduction number ℛ0. Finally, numerical simulations are conducted to validate the theoretical results obtained from the mathematical analysis.
文摘Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for the minimization of internal Gibbs energy preliminarily when solving deoxidation equilibria.The elimination of internal Gibbs energy minimization is particularly advantageous during the coupling of deoxidation equilibrium calculations with computationally intensive approaches,such as computational fluid dynamics.The model enables efficient calculations through direct embedment of the explicit forms of activity coefficient in the computing code.The proposed thermodynamic model was developed using a quasichemical approach with two key approximations:random mixing of metallic elements(Fe and oxidizing metal) and strong nonrandom pairing of metal and oxygen as nearest neighbors.Through these approximations,the quasichemical approach yielded the activity coefficients of solutes as explicit functions of composition and temperature without requiring the minimization of internal Gibbs energy or the coupling of separate programs.The model was successfully applied in the calculation of deoxidation equilibria of various elements(Al,B,C,Ca,Ce,Cr,La,Mg,Mn,Nb,Si,Ti,V,and Zr).The limitations of the model arising from these assumptions were also discussed.
文摘In this article VLE data for a ternary system (propylene-methanol-water) under 30~60 C,0. 3~0. 9 MPa with a mass ratio of methanol to water of 9:1, 8: 2, 7: 3 were determined with a static equilibrium still, and were correlated by using Peng-Robinson model. The average relative error ofpropylene concentration in liquid phase is 1. 46 %. The results indicate that the models are very suitablefor the ternary system and the data are reliable.
基金supported by the National Natural Science Foundation of China(21908234)the National Key Research&Development Program of China(2020YFB0606404)+1 种基金the Inner Mongolia Science and Technology Agency Program(2019CG058)Shanxi Province Natural Science Foundation(202103021223063).
文摘The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.
基金supported by the National Natural Science Foundation of China(Basic Science Center Program)(61988101)the Joint Fund of Ministry of Education for Equipment Pre-research (8091B022234)+3 种基金Shanghai International Science and Technology Cooperation Program (21550712400)Shanghai Pilot Program for Basic Research (22TQ1400100-3)the Fundamental Research Funds for the Central UniversitiesShanghai Artifcial Intelligence Laboratory。
文摘In this paper, the optimal variational generalized Nash equilibrium(v-GNE) seeking problem in merely monotone games with linearly coupled cost functions is investigated, in which the feasible strategy domain of each agent is coupled through an affine constraint. A distributed algorithm based on the hybrid steepest descent method is first proposed to seek the optimal v-GNE. Then, an accelerated algorithm with relaxation is proposed and analyzed, which has the potential to further improve the convergence speed to the optimal v-GNE. Some sufficient conditions in both algorithms are obtained to ensure the global convergence towards the optimal v-GNE. To illustrate the performance of the algorithms, numerical simulation is conducted based on a networked Nash-Cournot game with bounded market capacities.
文摘It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For instance, both Tmag c and β of the Ni3Pt (L12) and NiPt (L10) and Tmag <sub>c of the CoPt (L10) and CoPt3 (L12) ordered compounds are strongly depressed due to the ordering compared with those of the metastable disordered Ni-Pt and Co-Pt alloys. On the other hand, the γ’-FeNi3 (L12) and the α’-FeCo (B2) ordered compounds have higher Tmag <sub>c and β values comparing with the disordered solution phases, γ (A1) and α (A2), respectively. In consequence, the stability of the ordered phase is depressed or enhanced due to the interaction between the chemical and magnetic ordering caused by the decrease or increase of Tmag <sub>c and β values. The purpose of this study is to investigate the effect of the interaction between the chemical and the magnetic ordering on the phase equilibria in the Fe-X(X=Al, Co, Ni, Rh, Si) binary systems.The Gibbs energy of the α(A2), γ(A1) and liquid phases is described by a sub-regular solution approximation. The ordering contribution to the Gibbs energy ,ΔGorder <sub>m, and deviations of magnetic properties, ΔTmag <sub>c and Δβ, of the ordered compounds, FeAl (B2), Fe3Al (D03), FeCo (B2), FeRh (B2), FeSi (B2), Fe3Si (D03) and FeNi3 (L12) is introduced by the split compound energy formalism. Effect of the interaction between the chemical ordering, B2, D03 and L12 and the magnetic ordering on the phase equilibria will be discussed according to the calculated phase diagrams of the Fe-X binary systems.
基金National High-tech Research and Development Pro-gram(2006AA03Z102)Aeronautical Science Foundation of China(2006ZF51069)
文摘To determine the liquid-solid phase equilibria of the Nb-Si-Ti ternary system, Nb-Si-Ti alloys of different compositions are prepared. By means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA), the phases in the alloys, such as Si-based solutions, Ti(Nb)Si, Ti(Nb)Si2, Nb(Ti)Si2, Ti(Nb)5Si4, Nb(Ti)5Si3, Ti(Nb)5Si3, Nb(Ti)3Si and Nb-based solutions are identified, and the phase evolution is analyzed. As a result, the microstmctural and microchemical evidence provides a clear definition of the Nb-Si-Ti liquidus surface projection and indicates that the ternary phase diagram has seven transition reactions.