A new equivalent center of mass model of FPBs (friction pendulum bearings) is introduced, and based on this model, coefficient j of the equivalent center of mass separating from the sliding surface is defined. It is t...A new equivalent center of mass model of FPBs (friction pendulum bearings) is introduced, and based on this model, coefficient j of the equivalent center of mass separating from the sliding surface is defined. It is thought in theory that j has a significant impact on the isolation parameter of FPBs, since the equivalent post-yielding stiffness and friction coefficients are not simply determined by sliding radius and sliding friction pairs. The results of numerical simulation analysis using ABAQUS conducted on two groups of FPBs support this viewpoint. For FPBs with the same sliding radius and sliding friction pairs, the FPB modules of structural analysis software such as ETABS could only distinguish the equivalent transformation using j one by one. The seismic response data obtained in a base isolation calculation example of FPBs are very different, which reveals that j’s impact on the isolation effectiveness of FPBs cannot be ignored. The introduction of j will help improve the classical structural theory of FPBs and the weak points of structural analysis software based on this theory, which is important in achieving more accurate analyses in structural design.展开更多
Recent measurements have shown that gravitational waves and thus the gravitational interaction propagate with the speed of light. The propagation delay of the gravitational interaction in orbiting systems couples the ...Recent measurements have shown that gravitational waves and thus the gravitational interaction propagate with the speed of light. The propagation delay of the gravitational interaction in orbiting systems couples the orbital and center of mass motions. This causes the orbits to spiral out and the center of mass to accelerate. It is one of a number of small effects modifying the Kepler orbits. The calculations show that the analytical describable expansion of the semimajor axis started at a time that is less than the age of the systems. This could be caused by a collision of a system component in the past. The effect of this propagation delay on the motion of the Earth Moon and the Brown Dwarf 569Bab binary star system is analyzed. These systems were chosen because a considerable amount of measured astronomical data is available. The calculated results are in excellent agreement with the measured data. In galaxies, too, the energy transfer from the orbit of the star cloud to the center of mass motion causes the galaxies to ac-celerate. If galaxies are considered to be molecules of the universe, then the acceleration of the galaxies will cause the molecular gas to heat and expand. Alternatively, the loss in orbital internal energy of the galaxies should be included in the mass and energy in the calculation of the expanding Universe.展开更多
The current research of suspension performance evaluation is mixed in the evaluation of vehicle handling and ride comfort. However, it is lack of a direct and independent evaluation method for suspension performance. ...The current research of suspension performance evaluation is mixed in the evaluation of vehicle handling and ride comfort. However, it is lack of a direct and independent evaluation method for suspension performance. In this paper, a novel wheel turn center method is proposed to evaluate the suspension performance. This method is based on the concept and application of wheel turn center (WTC) and sprung mass turn center (SPTC). The vehicle body and each wheel are regarded to be independent rigid bodies and have their own turn centers which reflect respective steering motions and responses. Since the suspension is the link between vehicle body and wheels, the consistence between the sprung mass turn center and the wheel turn center reflects the effect and performance of the suspension system. Firstly, the concept and appropriate calculation method of WTC and SPTC are developed. Then the degree of inconsistence between WTC and SPTC and the time that they achieve consistence, when the vehicle experiences from transient steering to steady steering state, are proposed to evaluate suspension performance. The suspension evaluation tests are conducted under different vehicle velocities and lateral accelerations by using CarSim software. The simulation results show that the inconsistence of steering motion between vehicle body and wheels are mainly at high speeds and low lateral accelerations. Finally, based on the proposed evaluation indexes, the influences of different suspension characteristic parameters on suspension performance and their matches to improve steering coordination are discussed. The proposed wheel turn center method provides a guidance and potential application for suspension evaluation and optimization.展开更多
A. Einstein and H.A. Lorentz had found that the mass of an accelerated body traveling at relativistic velocity appears to depend on whether the acceleration is performed in the direction of motion or in a transverse d...A. Einstein and H.A. Lorentz had found that the mass of an accelerated body traveling at relativistic velocity appears to depend on whether the acceleration is performed in the direction of motion or in a transverse direction. E.P. Epstein rejected this result in the “Annalen der Physik”;he rather postulated an additional force that turns up when the body is accelerated in the longitudinal direction. It can be shown that the concept of an increased longitudinal mass is based on a simple mathematical error. When correcting this error, it turns out that Epstein’s additional, hidden force is indispensable in order to avoid an inner inconsistency of Special Relativity. It does most of the total work absorbed by the moving object, and is thus responsible for most of the increase in its energy (=mass), given the speed attained is relativistic. In other words: While the total force on the body needed to maintain a constant acceleration <em>a</em><sub>0</sub> is “<span style="white-space:nowrap;">(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1</sup><em>m</em><em>a</em><sub>0</sub>=<em>m</em><sub>0</sub>(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-3/2</sup><em>a</em><sub><em>0</em></sub></span>”, the technical force needed to maintain that acceleration amounts only to “<em>m</em><em>a</em><sub>0</sub>=<em><em>m</em><sub>0</sub>(1 - <em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1/2</sup><em>a</em><sub><em>0</em></sub></em>”. The total energy of two objects that undergo a symmetrical, elastic head-on collision is therefore not conserved during the collision, thus requiring the involvement of a hidden reservoir of energy. This result is confirmed by calculations that use the concept of momenergy. The phenomenon of an apparent disappearance of energy has been noticed in particle physics already (target-experiment), but its consequences have been ignored. Instead, an explanation has been given (reduced “energy of the center of mass”) which is inconsistent and violates the relativity principle.展开更多
基金973 Program under Grant No.2012CB723304Program for Changjiang Scholars and Innovative Research Team in UniversityNational Science Foundation Program under Grant No.91315301-07
文摘A new equivalent center of mass model of FPBs (friction pendulum bearings) is introduced, and based on this model, coefficient j of the equivalent center of mass separating from the sliding surface is defined. It is thought in theory that j has a significant impact on the isolation parameter of FPBs, since the equivalent post-yielding stiffness and friction coefficients are not simply determined by sliding radius and sliding friction pairs. The results of numerical simulation analysis using ABAQUS conducted on two groups of FPBs support this viewpoint. For FPBs with the same sliding radius and sliding friction pairs, the FPB modules of structural analysis software such as ETABS could only distinguish the equivalent transformation using j one by one. The seismic response data obtained in a base isolation calculation example of FPBs are very different, which reveals that j’s impact on the isolation effectiveness of FPBs cannot be ignored. The introduction of j will help improve the classical structural theory of FPBs and the weak points of structural analysis software based on this theory, which is important in achieving more accurate analyses in structural design.
文摘Recent measurements have shown that gravitational waves and thus the gravitational interaction propagate with the speed of light. The propagation delay of the gravitational interaction in orbiting systems couples the orbital and center of mass motions. This causes the orbits to spiral out and the center of mass to accelerate. It is one of a number of small effects modifying the Kepler orbits. The calculations show that the analytical describable expansion of the semimajor axis started at a time that is less than the age of the systems. This could be caused by a collision of a system component in the past. The effect of this propagation delay on the motion of the Earth Moon and the Brown Dwarf 569Bab binary star system is analyzed. These systems were chosen because a considerable amount of measured astronomical data is available. The calculated results are in excellent agreement with the measured data. In galaxies, too, the energy transfer from the orbit of the star cloud to the center of mass motion causes the galaxies to ac-celerate. If galaxies are considered to be molecules of the universe, then the acceleration of the galaxies will cause the molecular gas to heat and expand. Alternatively, the loss in orbital internal energy of the galaxies should be included in the mass and energy in the calculation of the expanding Universe.
基金Supported by Changjiang Scholar and Innovative Research Team Plan of China(Grant No.IRT0626)
文摘The current research of suspension performance evaluation is mixed in the evaluation of vehicle handling and ride comfort. However, it is lack of a direct and independent evaluation method for suspension performance. In this paper, a novel wheel turn center method is proposed to evaluate the suspension performance. This method is based on the concept and application of wheel turn center (WTC) and sprung mass turn center (SPTC). The vehicle body and each wheel are regarded to be independent rigid bodies and have their own turn centers which reflect respective steering motions and responses. Since the suspension is the link between vehicle body and wheels, the consistence between the sprung mass turn center and the wheel turn center reflects the effect and performance of the suspension system. Firstly, the concept and appropriate calculation method of WTC and SPTC are developed. Then the degree of inconsistence between WTC and SPTC and the time that they achieve consistence, when the vehicle experiences from transient steering to steady steering state, are proposed to evaluate suspension performance. The suspension evaluation tests are conducted under different vehicle velocities and lateral accelerations by using CarSim software. The simulation results show that the inconsistence of steering motion between vehicle body and wheels are mainly at high speeds and low lateral accelerations. Finally, based on the proposed evaluation indexes, the influences of different suspension characteristic parameters on suspension performance and their matches to improve steering coordination are discussed. The proposed wheel turn center method provides a guidance and potential application for suspension evaluation and optimization.
文摘A. Einstein and H.A. Lorentz had found that the mass of an accelerated body traveling at relativistic velocity appears to depend on whether the acceleration is performed in the direction of motion or in a transverse direction. E.P. Epstein rejected this result in the “Annalen der Physik”;he rather postulated an additional force that turns up when the body is accelerated in the longitudinal direction. It can be shown that the concept of an increased longitudinal mass is based on a simple mathematical error. When correcting this error, it turns out that Epstein’s additional, hidden force is indispensable in order to avoid an inner inconsistency of Special Relativity. It does most of the total work absorbed by the moving object, and is thus responsible for most of the increase in its energy (=mass), given the speed attained is relativistic. In other words: While the total force on the body needed to maintain a constant acceleration <em>a</em><sub>0</sub> is “<span style="white-space:nowrap;">(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1</sup><em>m</em><em>a</em><sub>0</sub>=<em>m</em><sub>0</sub>(1-<em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-3/2</sup><em>a</em><sub><em>0</em></sub></span>”, the technical force needed to maintain that acceleration amounts only to “<em>m</em><em>a</em><sub>0</sub>=<em><em>m</em><sub>0</sub>(1 - <em>v</em><sup>2</sup>/<em>c</em><sup>2</sup>)<sup>-1/2</sup><em>a</em><sub><em>0</em></sub></em>”. The total energy of two objects that undergo a symmetrical, elastic head-on collision is therefore not conserved during the collision, thus requiring the involvement of a hidden reservoir of energy. This result is confirmed by calculations that use the concept of momenergy. The phenomenon of an apparent disappearance of energy has been noticed in particle physics already (target-experiment), but its consequences have been ignored. Instead, an explanation has been given (reduced “energy of the center of mass”) which is inconsistent and violates the relativity principle.